Skip to main content
Log in

Green synthesis of MnO x nanostructures and studies of their supercapacitor performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Manganese oxides with different crystalline phases and morphologies were prepared by calcining MnCO3 precursors. The MnCO3 precursors with different morphologies were obtained through a green route under hydrothermal conditions with orange pericarp extracting solution as the reducing agent. By calcining the precursor under different temperatures and atmospheres, MnO x with different stoichiometric ratios (i.e., MnO, MnO2, Mn2O3, and Mn3O4) can be obtained. Electrochemical studies reveal that among these manganese oxides, MnO or MnO2 are more suitable as supercapacitor working electrodes than Mn2O3 or Mn3O4. They exhibit high specific capacitance up to 296.6 F/g and also possess good cycling stability, which make them potential electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev, 2011, 111: 3577–3613

    Article  CAS  Google Scholar 

  2. Wagner FT, Lakshmanan B, Mathias MF. Electrochemistry and the future of the automobile. J Phys Chem Lett, 2010, 1: 2204–2219

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P. Electrochemical capacitors for energy management. Science, 2008, 321: 651–652

    Article  CAS  Google Scholar 

  4. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater, 2014, 24: 5104–5111

    Article  CAS  Google Scholar 

  5. Chen LF, Zhang XD, Liang HW, Kong MG, Guan QF, Chen P, Wu ZY, Yu SH. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, 6: 7092–7102

    Article  CAS  Google Scholar 

  6. Chen LF, Huang ZH, Liang HW, Yao WT, Yu ZY, Yu SH. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci, 2013, 6: 3331–3338

    Article  CAS  Google Scholar 

  7. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett, 2009, 9: 1872–1876

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem, 2010, 20: 5983–5992

    Article  CAS  Google Scholar 

  9. Wang YG, Li HQ, Xia YY. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater, 2006, 18: 2619–2623

    Article  CAS  Google Scholar 

  10. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta, 2007, 52: 7377–7385

    Article  CAS  Google Scholar 

  11. Luo JY, Cheng L, Xia YY. LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochem Commun, 2007, 9: 1404–1409

    Article  CAS  Google Scholar 

  12. Lee SW, Kim J, Chen S, Hammond PT, Yang SH. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano, 2010, 4: 3889–3896

    Article  CAS  Google Scholar 

  13. Chen PC, Shen GZ, Shi Y, Chen HT, Zhou CW. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 2010, 4: 4403–4411

    Article  CAS  Google Scholar 

  14. Mao L, Zhang K, Chan HSO, Wu JS. Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J Mater Chem, 2012, 22: 1845–1851

    Article  CAS  Google Scholar 

  15. Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48: 3825–3833

    Article  CAS  Google Scholar 

  16. Lei ZB, Shi FH, Lu L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces, 2012, 4: 1058–1064

    Article  CAS  Google Scholar 

  17. Zhang X, Ji LY, Zhang SC, Yang WS. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources, 2007, 173: 1017–1023

    Article  CAS  Google Scholar 

  18. Liu R, Lee SB. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc, 2008, 130: 2942–2943

    Article  CAS  Google Scholar 

  19. Liu R, Duay J, Lee SB. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano, 2010, 4: 4299–4307

    Article  CAS  Google Scholar 

  20. Yang DF. Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications. J Power Sources, 2012, 198: 416–422

    Article  CAS  Google Scholar 

  21. Yang DF. Pulsed laser deposition of vanadium-doped manganese oxide thin films for supercapacitor applications. J Power Sources, 2013, 228: 89–96

    Article  CAS  Google Scholar 

  22. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM. Multi-segmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C, 2010, 114: 658–663

    Article  CAS  Google Scholar 

  23. Hou Y, Cheng YW, Hobson T, Liu J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett, 2010, 10: 2727–2733

    Article  CAS  Google Scholar 

  24. Bao LH, Zang JF, Li XD. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance super-capacitor electrodes. Nano Lett, 2011, 11: 1215–1220

    Article  CAS  Google Scholar 

  25. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett, 2007, 7: 281–286

    Article  CAS  Google Scholar 

  26. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW. Recent advances in metal oxide-based electrode architecture design for electro-chemical energy storage. Adv Mater, 2012, 24: 5166–5180

    Article  CAS  Google Scholar 

  27. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater, 2008, 20: 452–456

    Article  Google Scholar 

  28. Li ZQ, Ding Y, Xiong YJ, Yang Q, Xie Y. One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale. Chem Commun, 2005: 918–920

    Google Scholar 

  29. Yu P, Zhang X, Wang DL, Wang L, Ma YW. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst Growth Des, 2009, 9: 528–533

    Article  CAS  Google Scholar 

  30. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB. Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano, 2013, 7: 1200–1214

    Article  CAS  Google Scholar 

  31. Komaba S, Tsuchikawa T, Ogata A, Yabuuchi N, Nakagawa D, Tomita M. Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors. Electrochim Acta, 2012, 59: 455–463

    Article  CAS  Google Scholar 

  32. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high rlectro-oxidation vctivity. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  33. Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources, 2009, 194: 1202–1207

    Article  CAS  Google Scholar 

  34. Subramanian V, Zhu HW, Wei BQ. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun, 2006, 8: 827–832

    Article  CAS  Google Scholar 

  35. Hu CC, Chang KH, Hsu TY. The synergistic influences of OH concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc, 2008, 155: F196–F200

    Article  CAS  Google Scholar 

  36. Jiang H, Zhao T, Ma J, Yan CY, Li CZ. Ultrafine manganese dioxide nanowire network for high-performance super capacitors. Chem Commun, 2011, 47: 1264–1266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyi Lu or Feng Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Xu, X., Zhang, D. et al. Green synthesis of MnO x nanostructures and studies of their supercapacitor performance. Sci. China Chem. 58, 627–633 (2015). https://doi.org/10.1007/s11426-014-5242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5242-4

Keywords

Navigation