Skip to main content
Log in

Triblock copolymer-assisted construction of 20 nm-sized ytterbium-doped TiO2 hollow nanostructures for enhanced solar energy utilization efficiency

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rare-earth doped titania single-crystalline hollow nanoparticles of 20 nm are constructed via a simple sol-gel process. Amphiphilic ABA tri-block copolymers played a key role in assisting the formation of hollow structure, for which a hollow nanostructure growth mechanism is proposed. By introducing rare earth into the synthesis process, the as-prepared nanoparticles exhibit near-infrared light absorption properties. Photo-decomposition efficiency of Orange II azo dye can be successfully evaluated when using Yb3+-doped TiO2 hollow nanoparticles as photocatalysts; it is more than two times higher than the pure TiO2 hollow nanoparticles. The hollow nanostructured Yb3+-doped TiO2 samples are exploited as photoanodes in N719-sensitized solar cells and prove able to improve the photoelectric conversion efficiency by measuring the solar cell parameters of dye-sensitized solar cells (DSSCs) under simulative sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemannt DW. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69–96

    Article  CAS  Google Scholar 

  2. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  3. Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem, 2005, 44: 6841–6851

    Article  Google Scholar 

  4. Yin ZY, Zhu JX, He QY, Cao XH, Tan CL, Chen HY, Yan QY, Zhang H. Graphene-based materials for solar cell applications. Adv Energy Mater, 2014, 4: 1300574

    Google Scholar 

  5. Zhu JX, Yang D, Yin ZY, Yan QY, Zhang H. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10: 3480–3498

    Article  CAS  Google Scholar 

  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215–218

    Article  CAS  Google Scholar 

  7. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dyesensitized solar cells. Chem Rev, 2012, 110: 6595–6663

    Article  Google Scholar 

  8. Chen XB, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750

    Article  CAS  Google Scholar 

  9. Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758

    Article  CAS  Google Scholar 

  10. Janisch R, Gopal P, Spaldin NA. Transition metal-doped TiO2 and ZnO-present status of the field. J Phys: Condens Matter, 2005, 17: 657–689

    Google Scholar 

  11. Dozzi MV, Selli E. Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C, 2013, 14: 13–28

    Article  CAS  Google Scholar 

  12. Bingham S, Daoud WA. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J Mater Chem, 2011, 21: 2041–2050

    Article  CAS  Google Scholar 

  13. Sandoval S, Yang J, Alfaro JG, Liberman A, Makale M, Chiang CE, Schuller IK, Kummel AC, Trogler WC. Europium-doped TiO2 hollow nanoshells: two-photon imaging of cell binding. Chem Mater, 2012, 24: 4222–4230

    Article  CAS  Google Scholar 

  14. Frindell KL, Bartl MH, Popitsch A, Stucky GD. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew Chem Int Ed, 2002, 41: 959–962

    Article  CAS  Google Scholar 

  15. Li L, Tsung CK, Yang Z, Stucky GD, Sun LD, Wang JF, Yan CH. Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer. Adv Mater, 2008, 20: 903–908

    Article  CAS  Google Scholar 

  16. Li ZX, Shi FB, Zhang T, Wu HS, Sun LD, Yan CH. Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem Commun, 2011, 47: 8109–8111

    Article  CAS  Google Scholar 

  17. Xu AW, Gao Y, Liu HQ. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal, 2002, 207: 151–157

    Article  CAS  Google Scholar 

  18. Zhang J, Peng WQ, Chen ZH, Chen H, Han LY. Effect of cerium doping in the TiO2 photoanode on the electron transport of dyesensitized solar cells. J Phys Chem C, 2012, 116: 19182–19190

    Article  CAS  Google Scholar 

  19. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA. Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett, 2008, 8: 1654–1659

    Article  CAS  Google Scholar 

  20. Chen XB, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  CAS  Google Scholar 

  21. Lou XW, Archer LA, Yang ZC. Hollow micro-/nanostructures: synthesis and applications. Adv Mater, 2008, 20: 3987–4019

    Article  CAS  Google Scholar 

  22. Kim SW, Kim M, Lee WY, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc, 2002, 124: 7642–7643

    Article  CAS  Google Scholar 

  23. Yang ZZ, Niu ZW, Lu YF, Hu ZB, Han CC. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Ed, 2003, 42: 1943–1945

    Article  CAS  Google Scholar 

  24. Wang ZY, Lou XW. TiO2 nanocages: fast synthesis, interior functionalization and improved lithium storage properties. Adv Mater, 2012, 24: 4124–4129

    Article  CAS  Google Scholar 

  25. Wang YW, Xu H, Wang XB, Zhang X, Jia HM, Zhang LZ, Qiu JR. A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. J Phys Chem B, 2006, 110: 13835–13840

    Article  CAS  Google Scholar 

  26. Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc, 2007, 129: 8406–8407

    Article  CAS  Google Scholar 

  27. Lou XW, Archer LA. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv Mater, 2008, 20: 1853–1858

    Article  CAS  Google Scholar 

  28. Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B, 2004, 108: 3492–3495

    Article  CAS  Google Scholar 

  29. Adachi M, Murata Y, Takao J, Jiu JT, Sakamoto M, Wang FM. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J Am Chem Soc, 2004, 126: 14943–14949

    Article  CAS  Google Scholar 

  30. Park C, Yoon J, Thomas EL. Enabling nanotechnology with selfassembled block copolymer patterns. Polymer, 2003, 44: 6725–6760

    Article  CAS  Google Scholar 

  31. Kim BJ, Bang J, Hawer CJ, Kramer EJ. Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules, 2006, 39: 4108–4114

    Article  CAS  Google Scholar 

  32. Beck JS, Vartuli JC, Roth WJ, Lenowicz ME, Kresge CT, Schmidt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843

    Article  CAS  Google Scholar 

  33. Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF, Kumar D. Cooperative organization of inorganicsurfactant and biomimetic assemblies. Science, 1995, 267: 1138–1143

    Article  CAS  Google Scholar 

  34. FÖrster S, Antonietti M. Amphiphilic block copolymers in structurecontrolled nanomaterial hybrids. Adv Mater, 1998, 10: 195–217

    Article  Google Scholar 

  35. Sasidharan M, Nakashima K, Gunawardhana N, Yokoi T, Inoue M, Yusa S, Yoshio M, Tatsumi T. Novel titania hollow nanospheres of size 28±1 nm using soft-templates and their application for lithiumion rechargeable batteries. Chem Commun, 2011, 47: 6921–6923

    Article  CAS  Google Scholar 

  36. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev, 2002, 102: 4093–4138

    Article  Google Scholar 

  37. Alexandridis P, Holzwarth JF. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir, 1997, 13: 6074–6082

    Article  CAS  Google Scholar 

  38. Pandit N, Trygstad T, Croy S, Bohorquez M, Koch C. Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. J Colloid Interface Sci, 2000, 222: 213–220

    Article  CAS  Google Scholar 

  39. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater, 1999, 11: 2813–2826

    Article  CAS  Google Scholar 

  40. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548–552

    Article  CAS  Google Scholar 

  41. Samiee L, Beitollahi A, Bahmani M, Akbarnejad MM, Vinu A. Effects of ageing conditions and block copolymer concentration on the stability and micellization of P123-Ti4+ sols prepared by the templating method. Res Chem Intermed, 2010, 36: 897–923

    Article  CAS  Google Scholar 

  42. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396: 152–155

    Article  CAS  Google Scholar 

  43. Seebergh JE, Berg JC. Depletion flocculation of aqueous, electrosterically- stabilized latex dispersions. Langmuir, 1994, 10: 454–463

    Article  CAS  Google Scholar 

  44. Štengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys, 2009, 114: 217–226

    Article  Google Scholar 

  45. Wang C, Ao YH, Wang PF, Hou J, Qian J. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Appl Surf Sci, 2010, 257: 227–231

    Article  CAS  Google Scholar 

  46. Fan K, Zhang W, Peng TY, Chen JN, Yang F. Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J Phys Chem C, 2011, 115: 17213–17219

    Article  CAS  Google Scholar 

  47. Liang LL, Liu YM, Bu CH, Guo KM, Sun WW, Huang N, Peng T, Sebo B, Pan MM, Liu W, Guo SS, Zhao XZ. Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv Mater, 2013, 25: 2174–2180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Liao or Quan Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Xu, X., Fang, Y. et al. Triblock copolymer-assisted construction of 20 nm-sized ytterbium-doped TiO2 hollow nanostructures for enhanced solar energy utilization efficiency. Sci. China Chem. 58, 850–857 (2015). https://doi.org/10.1007/s11426-014-5237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5237-1

Keywords

Navigation