Skip to main content
Log in

Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy

  • Reviews
  • Special Issue Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Sum frequency generation vibrational spectroscopy (SFG-VS) has been demonstrated to be a powerful technique to study the interfacial structures and interactions of biomolecules at the molecular level. Yet most previous studies mainly collected the SFG spectra in the frequency range of 1500–4000 cm−1, which is not always sufficient to describe the detailed interactions at surface and interface. Thorough knowledge of the complex biophysicochemical interactions between biomolecules and surface requires new ideas and advanced experimental methods for collecting SFG vibrational spectra. We introduced some advanced methods recently exploited by our group and others, including (1) detection of vibration modes in the fingerprint region; (2) combination of chiral and achiral polarization measurements; (3) SFG coupled with surface plasmon polaritons (SPPs); (4) imaging and microscopy approaches; and (5) ultrafast time-resolved SFG measurements. The technique that we integrated with these advanced methods may help to give a detailed and high-spatial-resolution 3D picture of interfacial biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen JP. Biophysical Chemistry. Oxford: Wiley-Blackwell Press, 2008

    Google Scholar 

  2. Yeagle PL. The Structure of Biological Membranes. Boca Raton, FL: CRC Press, 2005

    Google Scholar 

  3. Mateo CR, Gomez J, Villalain J, Gonzalez Ros JM. Protein-Lipid Interaction: New Approaches and Emerging Concepts. Berlin: Springer, 2006

    Google Scholar 

  4. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci, 2002, 500: 28–60

    CAS  Google Scholar 

  5. He LZ, Dexter AF, Middelberg APJ. Biomolecular engineering at interfaces. Chem Eng Sci, 2006, 61: 989–1003

    CAS  Google Scholar 

  6. Garcia AJ. Interfaces to control cell-biomaterial adhesive interactions. Adv Polym Sci, 2006, 203: 171–190

    CAS  Google Scholar 

  7. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater, 2009, 8: 543–557

    CAS  Google Scholar 

  8. Ali MR, Cheng KH, Huang JY. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad Sci USA, 2007, 104: 5372–5377

    CAS  Google Scholar 

  9. Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc, 2009, 131: 12714–12720

    CAS  Google Scholar 

  10. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol, 2008, 9: 125–138

    CAS  Google Scholar 

  11. Ye SJ, Li HC, Yang WL, Luo Y. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals. J Am Chem Soc, 2014, 136: 1206–1209

    CAS  Google Scholar 

  12. Brune D, Hellborg R, Whitlow HJ, Hunderi O. Surface Characterization: A User’s Sourcebook. Wiley-VCH: Scandinavian Science Publisher, 1997

    Google Scholar 

  13. Shen YR. The Principles of Nonlinear Optics. New York: Wiley, 1984

    Google Scholar 

  14. Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep, 2006, 61: 429–444

    CAS  Google Scholar 

  15. Lambert A, Davies P, Neivandt D. Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev, 2005, 40: 103–145

    CAS  Google Scholar 

  16. Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem Rev, 2006, 106: 1155–1175

    CAS  Google Scholar 

  17. Wang HF, Gan W, Lu R, Rao Y, Wu BH. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem, 2005, 24: 191–256

    Google Scholar 

  18. Ye SJ, Nguyen KT, Chen Z. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B, 2010, 114: 3334–3340

    CAS  Google Scholar 

  19. Guyotsionnest P, Hunt JH, Shen YR. Sum-frequency vibrational spectroscopy of a Langmuir film: study of molecular-orientation of a two dimensional system. Phys Rev Lett, 1987, 59: 1597–1600

    CAS  Google Scholar 

  20. Zhu XD, Suhr H, Shen YR. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B, 1987, 35: 3047–3050

    CAS  Google Scholar 

  21. Liu W, Wang ZG, Fu L, Leblanc RM, Yan ECY. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy. Langmuir, 2013, 29: 15022–15031

    CAS  Google Scholar 

  22. Ma G, Allen HC. DPPC Langmuir monolayer at the air/water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir, 2006, 22: 5341–5349

    CAS  Google Scholar 

  23. Walker RA, Gruetzmacher JA, Richmond GL. Phosphatidylcholine monolayer structure at a liquid/liquid interface. J Am Chem Soc, 1998, 120: 6991–7003

    CAS  Google Scholar 

  24. Kim J, Kim G, Cremer PS. Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir, 2001, 17: 7255–7260

    CAS  Google Scholar 

  25. Roke S, Schins J, Muller M, Bonn M. Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys Rev Lett, 2003, 90: 128101

    Google Scholar 

  26. Liu J, Conboy JC. Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. J Am Chem Soc, 2004, 126: 8894–8895

    CAS  Google Scholar 

  27. Nickolov ZS, Britt DW, Miller JD. Sum-frequency spectroscopy analysis of two-component Langmuir monolayers and the associated interfacial water structure. J Phy Chem B, 2006, 110: 15506–15513

    CAS  Google Scholar 

  28. Anderson NA, Richter LJ, Stephenson JC, Briggman KA. Characterization and control of lipid layer fluidity in hybrid bilayer membranes. J Am Chem Soc, 2007, 129: 2094–2100

    CAS  Google Scholar 

  29. Ohe C, Goto Y, Noi M, Arai M, Kamijo H, Itoh K. Sum frequency generation spectroscopic studies on phase transitions of phospholipid monolayers containing poly(ethylene oxide) lipids at the air/water interface. J Phys Chem B, 2007, 111: 1693–1700

    CAS  Google Scholar 

  30. Kett PJN, Casford MTL, Davies PB. Sum frequency generation (SFG) vibrational spectroscopy of planar phosphatidylethanolamine hybrid bilayer membranes under water. Langmuir, 2010, 26: 9710–9719

    CAS  Google Scholar 

  31. Liljeblad JFD, Bulone V, Tyrode E, Rutland MW, Johnson CM. Phospholipid monolayers probed by vibrational sum frequency spectroscopy: instability of unsaturated phospholipids. Biophy J, 2010, 98: L50–L52

    CAS  Google Scholar 

  32. Sung W, Seok S, Kim D, Tian CS, Shen YR. Sum-frequency spectroscopic study of Langmuir monolayers of lipids having oppositely charged headgroups. Langmuir, 2010, 26: 18266–18272

    CAS  Google Scholar 

  33. Strader ML, De Aguiar HB, De Beer AGF, Roke S. Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering. Soft Matter, 2011, 7: 4959–4963

    CAS  Google Scholar 

  34. Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen CC, Benderskii AV, Auner GW. Molecular organization in SAMs used for neuronal cell growth. Langmuir, 2008, 24: 4097–4106

    CAS  Google Scholar 

  35. Diesner MO, Howell C, Kurz V, Verreault D, Koelsch P. In vitro characterization of surface properties through living cells. J Phys Chem Lett, 2010, 1: 2339–2342

    CAS  Google Scholar 

  36. Diesner MO, Welle A, Kazanci M, Kaiser P, Spatz J, Koelsch P. In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases, 2011, 6: 171–179

    CAS  Google Scholar 

  37. Howell C, Diesner MO, Grunze M, Koelsch P. Probing the extracellular matrix with sumfrequency generation spectroscopy. Langmuir, 2008, 24: 13819–13821

    CAS  Google Scholar 

  38. Kim SH, Lee CM, Kafle K. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng, 2013, 30: 2127–2141

    CAS  Google Scholar 

  39. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SJ. Selective detection of crystalline cellulose in plant cell walls with sum frequency generation (SFG) vibration spectroscopy. Biomacromolecules, 2011, 12: 2434–2439

    CAS  Google Scholar 

  40. Kong LY, Lee C, Kim SH, Ziegler GR. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B, 2014, 118: 1775–1783

    CAS  Google Scholar 

  41. Kett PJN, Casford MTL, Davies PB. Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes. J Phys Chem B, 2013, 117: 6455–6465

    CAS  Google Scholar 

  42. Liu J, Brown KL, Conboy JC. The effect of cholesterol on the intrinsic rate of lipid flip-flop as measured by sum-frequency vibrational spectroscopy. Faraday Discuss, 2013, 161: 45–61

    CAS  Google Scholar 

  43. Ohe C, Sasaki T, Noi M, Goto Y, Itoh K. Sum frequency generation spectroscopic study of the condensation effect of cholesterol on a lipid monolayer. Anal Bioanal Chem, 2007, 388: 73–79

    CAS  Google Scholar 

  44. Bonn M, Roke S, Berg O, Juurlink LBF, Stamouli A, Muller M. A molecular view of cholesterol-induced condensation in a lipid monolayer. J Phys Chem B, 2004, 108: 19083–19085

    CAS  Google Scholar 

  45. Levy D, Briggman KA. Cholesterol/phospholipid interactions in hybrid bilayer membranes. Langmuir, 2007, 23: 7155–7161

    CAS  Google Scholar 

  46. Paszti Z, Keszthelyi T, Hakkel O, Guczi L. Adsorption of amino acids on hydrophilic surfaces. J Phys Condens Matter, 2008, 20: 224014

    Google Scholar 

  47. Ji N, Shen YR. Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems. J Am Chem Soc, 2004, 126: 15008–15009

    CAS  Google Scholar 

  48. Holinga GJ, York RL, Onorato RM, Thompson CM, Webb NE, Yoon AP, Somorjai GA. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces. J Am Chem Soc, 2011, 133: 6243–6253

    CAS  Google Scholar 

  49. Ding B, Chen Z. Molecular interactions between cell penetrating peptide pep-1 and model cell membranes. J Phys Chem B, 2012, 116: 2545–2552

    CAS  Google Scholar 

  50. Volkov V, Bonn M. Structural properties of gp41 fusion peptide at a model membrane interface. J Phys Chem B, 2013, 117: 15527–15535

    CAS  Google Scholar 

  51. Roy S, Covert PA, FitzGerald WR, Hore DK. Biomolecular structure at solid/liquid interfaces as revealed by nonlinear optical spectroscopy. Chem Rev, 2014, 114: 8388–8415

    CAS  Google Scholar 

  52. Ye SJ, Wei F, Li HC, Tian KZ, Luo Y. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application. Adv Protein Chem Struct Bio, 2013, 93: 213–255

    CAS  Google Scholar 

  53. Liu Y, Jasensky J, Chen Z. Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir, 2012, 28: 2113–2121

    Google Scholar 

  54. Fu L, Wang ZG, Yan ECY. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int J Mol Sci, 2011, 12: 9404–9425

    CAS  Google Scholar 

  55. Ye SJ, Nguyen KT, Le Clair SV, Chen Z. In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. J Struct Biol, 2009, 168: 61–77

    CAS  Google Scholar 

  56. Keszthelyi T, Hill K, Kiss E. Interaction of phospholipid Langmuir monolayers with an antibiotic peptide conjugate. J Phys Chem B, 2013, 117: 6969–6979

    CAS  Google Scholar 

  57. Niaura G, Kuprionis Z, Ignatjev I, Kazemekaite M, Valincius G, Talaikyte Z, Razumas V, Svendsen A. Probing of lipase activity at air/water interface by sum-frequency generation spectroscopy. J Phys Chem B, 2008, 112: 4094–4101

    CAS  Google Scholar 

  58. Tong YJ, Li N, Liu HJ, Ge AM, Osawa M, Ye S. Mechanistic studies by sum-frequency generation spectroscopy: hydrolysis of a supported phospholipid bilayer by phospholipase A2. Angew Chem Inter Ed, 2010, 49: 2319–2323

    CAS  Google Scholar 

  59. Sartenaer Y, Tourillon G, Dreesen L, Lis D, Mani AA, Thiry PA, Peremans A. Sum-frequency generation spectroscopy of DNA monolayers. Biosens Bioelectron, 2007, 22: 2179–2183

    CAS  Google Scholar 

  60. Howell C, Schmidt R, Kurz V, Koelsch P. Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments. Biointerphases, 2008, 3: FC47–FC51

    Google Scholar 

  61. Bulard E, Fontaine-Aupart MP, Dubost H, Zheng WQ, Bellon-Fontaine MN, Herry JM, Bourguignon B. Competition of bovine serum albumin adsorption and bacterial adhesion onto surface-grafted ODT: in situ study by vibrational SFG and fluorescence confocal microscopy. Langmuir, 2012, 28: 17001–17010

    CAS  Google Scholar 

  62. Apte JS, Gamble LJ, Castner DG, Campbell CT. Kinetics of leucinelysine peptide adsorption and desorption at -CH3 and -COOH terminated alkylthiolate monolayers. Biointerphases, 2010, 5: 97–104

    CAS  Google Scholar 

  63. Leung BO, Yang Z, Wu SSH, Chou KC. Role of interfacial water on protein adsorption at cross-linked polyethylene oxide interfaces. Langmuir, 2012, 28: 5724–5728

    CAS  Google Scholar 

  64. Han XF, Uzarski JR, Mello CM, Chen Z. Different interfacial behaviors of N- and C-terminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface. Langmuir, 2013, 29: 11705–11712

    CAS  Google Scholar 

  65. Ye SJ, Nguyen KT, Boughton A, Mello C, Chen Z. Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir, 2010, 26: 6471–6477

    CAS  Google Scholar 

  66. Baio JE, Weidner T, Ramey D, Pruzinsky L, Castner DG. Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy. Biointerphases, 2013, 8: 18

    Google Scholar 

  67. Dreesen L, Sartenaer Y, Humbert C, Mani AA, Methivier C, Pradier CM, Thiry PA, Peremans A. Probing ligand-protein recognition with sum-frequency generation spectroscopy: the avidin-biocytin case. ChemPhysChem, 2004, 5: 1719–1725

    CAS  Google Scholar 

  68. Ye SJ, Li HC, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc, 2012, 134: 6237–6243

    CAS  Google Scholar 

  69. Scheu R, Chen YX, De Aguiar HB, Rankin BM, Ben-Amotz D, Roke S. Specific ion effects in amphiphile hydration and interface stabilization. J Am Chem Soc, 2014, 136: 2040–2047

    CAS  Google Scholar 

  70. Chen X, Yang TL, Kataoka S, Cremer PS. Specific ion effects on interfacial water structure near macromolecules. J Am Chem Soc, 2007, 129: 12272–12279

    CAS  Google Scholar 

  71. Wei F, Ye SJ, Li HC, Luo Y. Phosphate ions promoting association between peptide and modeling cell membrane revealed by sum frequency generation vibrational spectroscopy. J Phys Chem C, 2013, 117: 11095–11103

    CAS  Google Scholar 

  72. Wei F, Li HC, Ye SJ. Specific ion interaction dominates over hydrophobic matching effects in peptide-lipid bilayer interactions: the case of short peptide. J Phys Chem C, 2013, 117: 26190–26196

    CAS  Google Scholar 

  73. Uehara TM, Marangoni VS, Pasquale N, Miranda PB, Lee KB, Zucolotto V. A detailed investigation on the interactions between magnetic nanoparticles and cell membrane models. ACS Appl Mater Interfaces, 2013, 5: 13063–13068

    CAS  Google Scholar 

  74. Liu J, Conboy JC. 1,2-Diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophy J, 2005, 89: 2522–2532

    CAS  Google Scholar 

  75. Boughton AP, Chen Z. Sum frequency generation vibrational spectroscopy: a sensitive technique for the study of biological molecules at interfaces. In: Smentkowski VA. Surface Analysis and Techniques in Biology. Berlin: Spriger Verlag, 2014

    Google Scholar 

  76. Zhang C, Myers JN, Chen Z. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy. Soft Matter, 2013, 9: 4738–4761

    CAS  Google Scholar 

  77. Sung W, Kim D, Shen YR. Sum-frequency vibrational spectroscopic studies of Langmuir monolayers. Curr Appl Phys, 2013, 13: 619–632

    Google Scholar 

  78. Kim SH, Lee CM, Kafle K. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application. Korean J Chem Eng, 2013, 30: 2127–2141

    CAS  Google Scholar 

  79. Zhang XX, Han XF, Wu FG, Jasensky J, Chen Z. Nano-bio interfaces probed by advanced optical spectroscopy: from model system studies to optical biosensors. Chin Sci Bull, 2013, 58: 2537–2556

    CAS  Google Scholar 

  80. Chen Z. Molecular structures of buried polymer interfaces and biological interfaces detected by sum frequency generation vibrational spectroscopy. Acta Phys Chim Sin, 2012, 28: 504–521

    CAS  Google Scholar 

  81. Roke S. Nonlinear spectroscopy of biointerface. Int J Mat Res, 2011, 102: 906–912

    CAS  Google Scholar 

  82. Roke S. Nonlinear optical spectroscopy of soft matter interfaces. ChemPhysChem, 2009, 10: 1380–1388

    CAS  Google Scholar 

  83. Bonn M, Campen RK. Optical methods for the study of dynamics in biological membrane models. Surf Sci, 2009, 603: 1945–1952

    CAS  Google Scholar 

  84. Le Clair SV, Nguyen K, Chen Z. Sum frequency generation studies on bioadhesion: elucidating the molecular structure of proteins at interfaces. J Adhesion, 2009, 85: 484–511

    Google Scholar 

  85. Ma G, Allen HC. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy. Photochem Photobio, 2006, 82: 1517–1529

    CAS  Google Scholar 

  86. Chen XY, Chen Z. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. Biochim Biophys Acta, 2006, 1758: 1257–1273

    CAS  Google Scholar 

  87. Chen XY, Clarke ML, Wang J, Chen Z. Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces. Int J Mod Phys B, 2005, 19: 691–713

    CAS  Google Scholar 

  88. Vogel V. What do nonlinear optical techniques have to offer the biosciences? Curr Opinn Colloid Interface Sci, 1996, 1: 257–263

    CAS  Google Scholar 

  89. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev, 1999, 99: 2957–2975

    CAS  Google Scholar 

  90. Brown TL. Infrared intensities and molecular structure. Chem Rev, 1958, 58: 581–609

    CAS  Google Scholar 

  91. Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. UK: John Wiley, 2004

    Google Scholar 

  92. Johnson CM, Tyrode E, Baldelli S, Rutland MW, Leygraf C. A vibrational sum frequency spectroscopy study of the liquid/gas interface of acetic acid-water mixtures: 1. Surface speciation. J Phys Chem B, 2005, 109: 321–328

    CAS  Google Scholar 

  93. Tyrode E, Johnson CM, Rutland MW, Day JPR, Bain CD. A study of the adsorption of ammonium perfluorononanoate at the air/liquid interface by vibrational sum-frequency spectroscopy. J Phys Chem C, 2007, 111: 316–329

    CAS  Google Scholar 

  94. Johnson CM, Tyrode E. Study of the adsorption of sodium dodecyl sulfate (SDS) at the air/water interface: targeting the sulfate headgroup using vibrational sum frequency spectroscopy. Phys Chem Chem Phys, 2005, 7: 2635–2640

    CAS  Google Scholar 

  95. Hore DK, Beaman DK, Richmond GL. Surfactant headgroup orientation at the air/water interface. J Am Chem Soc, 2005, 127: 9356–9357

    CAS  Google Scholar 

  96. Hore DK, Beaman DK, Parks DH, Richmond GL. Whole-molecule approach for determining orientation at isotropic surfaces by nonlinear vibrational spectroscopy. J Phys Chem B, 2005, 109: 16846–16851

    CAS  Google Scholar 

  97. Wei F, Ye SJ. Molecular-level insights into N-N π-bond rotation in the pH-induced interfacial isomerization of 5-octadecyloxy-2-(2-pyridylazo)phenol monolayer investigated by sum frequency generation vibrational spectroscopy. J Phys Chem C, 2012, 116: 16553–16560

    CAS  Google Scholar 

  98. Ye SJ, Wei F. An approach to compatible multiple nonlinear vibrational spectroscopy measurements using commercial sum frequency generation system. Analyst, 2011, 136: 2489–2494

    CAS  Google Scholar 

  99. Sugiharto AB, Johnson CM, De Aguiar HB, Alloatti L, Roke S. Generation and application of high power femtosecond pulses in the vibrational fingerprint region. Appl Phys B, 2008, 91: 315–318

    CAS  Google Scholar 

  100. Sugiharto AB, Johnson CM, Dunlop IE, Roke S. Delocalized surface modes reveal three-dimensional structures of complex biomolecules. J Phys Chem C, 2008, 112: 7531–7534

    CAS  Google Scholar 

  101. Barth A, Zscherp C. What vibrations tell about proteins. Quar Rev Biophys, 2002, 35: 369–430

    CAS  Google Scholar 

  102. Tamm L, Tatulian SA. Infrared spectroscopy of proteins and peptides in lipid bilayers. Quar Rev Biophys, 1997, 30: 365–429

    CAS  Google Scholar 

  103. Oladepo SA, Xiong K, Hong ZM, Asher SA, Hander J, Lednev IK. UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev, 2012, 112: 2604–2628

    CAS  Google Scholar 

  104. Belkin MA, Shen YR. Non-linear optical spectroscopy as a novel probe for molecular chirality. Inter Rev Phy Chem, 2005, 24: 257–299

    CAS  Google Scholar 

  105. Haupert LM, Simpson GJ. Chirality in nonlinear optics. Annu Rev Phys Chem, 2009, 60: 345–365

    CAS  Google Scholar 

  106. Belkin MA, Han SH, Wei X, Shen YR. Sum-frequency generation in chiral liquids near electronic resonance. Phys Rev Lett, 2001, 87: 113001

    CAS  Google Scholar 

  107. Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR. Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys Rev Lett, 2000, 85: 4474–4476

    CAS  Google Scholar 

  108. Ji N, Ostroverkhov V, Belkin M, Shiu YJ, Shen YR. Toward chiral sum-frequency spectroscopy. J Am Chem Soc, 2006, 128: 8845–8848

    CAS  Google Scholar 

  109. Ji N, Shen YR. A dynamic coupling model for sum frequency chiral response from liquids composed of molecules with a chiral side chain and an achiral chromophore. J Am Chem Soc, 2005, 127: 12933–12942

    CAS  Google Scholar 

  110. Belkin MA, Shen YR. Doubly resonant IR-UV sum-frequency vibrational spectroscopy on molecular chirality. Phys Rev Lett, 2003, 91: 213907

    CAS  Google Scholar 

  111. Mitchell SA, McAloney RA. Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface. J Phys Chem B, 2004, 108: 1020–1029

    CAS  Google Scholar 

  112. Reiser KM, McCourt AB, Yankelevich DR, Knoesen A. Structural origins of chiral second-order optical nonlinearity in collagen: amide I band. Biophys J, 2012, 103: 2177–2186

    CAS  Google Scholar 

  113. Wang ZG, Fu L, Yan ECY. C-H stretch for probing kinetics of self-assembly into macromolecular chiral structures at interfaces by chiral sum frequency generation spectroscopy. Langmuir, 2013, 29: 4077–4083

    CAS  Google Scholar 

  114. Xiao DQ, Fu L, Liu J, Batista VS, Yan ECY. Amphiphilic adsorption of human islet amyloid polypeptide aggregates to lipid/aqueous interfaces. J Mol Biol, 2012, 421: 537–547

    CAS  Google Scholar 

  115. Conboy JC, Kriech MA. Measuring melittin binding to planar supported lipid bilayer by chiral second harmonic generation. Anal Chimica Acta, 2003, 496: 143–153

    CAS  Google Scholar 

  116. Rocha-Mendoza I, Yankelevich DR, Wang M, Reiser KM, Frank CW, Knoesen A. Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen. Biophys J, 2007, 93: 4433–4444

    CAS  Google Scholar 

  117. Wang J, Chen XY, Clarke ML, Chen Z. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Proc Natl Acad Sci USA, 2005, 102: 4978–4983

    CAS  Google Scholar 

  118. Nguyen KT, King JT, Chen Z. Orientation determination of interfacial b-sheet structures in situ. J Phys Chem B, 2010, 114: 8291–8300

    CAS  Google Scholar 

  119. Fu L, Liu J, Yan ECY. Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc, 2011, 133: 8094–8097

    CAS  Google Scholar 

  120. Fu L; Ma G, Yan ECY. In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation. J Am Chem Soc, 2010, 132: 5405–5412

    CAS  Google Scholar 

  121. Fu L, Xiao DQ, Wang ZG, Batista VS, Yan ECY. Chiral sum frequency generation for in situ probing proton exchange in antiparallel β-sheets at interfaces. J Am Chem Soc, 2013, 135: 3592–3598

    CAS  Google Scholar 

  122. Ma SL, Li HC, Tian KZ, Ye SJ, Luo Y. In situ and real time SFG measurements reveal organization and transport of cholesterol analog 6-ketocholestanol in cell membrane. J Phys Chem Lett, 2014, 5: 419–424

    CAS  Google Scholar 

  123. Stokes GY, Gibbs-Davis JM, Boman FC, Stepp BR, Condie AG, Nguyen ST, Geiger FM. Making “sense” of DNA. J Am Chem Soc, 2007, 129: 7492–7493

    CAS  Google Scholar 

  124. Walter SR, Geiger FM. DNA on stage: showcasing oligonucleotides at surfaces and interfaces with second harmonic and vibrational sum frequency generation. J Phys Chem Lett, 2009, 1: 9–15

    Google Scholar 

  125. Li HC, Ye SJ, Wei F, Ma SL, Luo Y. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118–135] investigated by sum frequency generation vibrational spectroscopy. Langmuir, 2012, 28: 16979–16988

    CAS  Google Scholar 

  126. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science, 2010, 327: 46–50

    CAS  Google Scholar 

  127. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwave-length optics. Nature, 2003, 424: 824–830

    CAS  Google Scholar 

  128. Maier SA. Plasmonics: Fundamentals and Applications. New York: Springer, 2007

    Google Scholar 

  129. Lis D, Caudano Y, Henry M, Demoustier-Champagne S, Ferain E, Cecchet F. Selective plasmonic platforms based on nanopillars to enhance vibrational sum-frequency generation spectroscopy. Adv Optical Mater, 2013, 1: 244–255

    Google Scholar 

  130. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007, 58: 267–297

    CAS  Google Scholar 

  131. Stiles PL, Dieringer JA, Shah NC, Van Duyne RR. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem, 2008, 1: 601–626

    CAS  Google Scholar 

  132. Alieva EV, Kuzik LA, Yakovlev VA, Knippels G, van der Meer AFG, Mattei G. Spectroscopy of a thin fullerene film on silver using sum frequency generation enhanced by visible surface plasmonpolaritons. Chem Phys Lett, 1999, 302: 528–532

    CAS  Google Scholar 

  133. Alieva EV, Kuzik LA, Yakovlev VA. Sum frequency generation spectroscopy of thin organic films on silver using visible surface plasmon generation. Chem Phys Lett, 1998, 292: 542–546

    CAS  Google Scholar 

  134. Baldelli S, Eppler AS, Anderson E, Shen YR, Somorjai GA. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays. J Chem Phys, 2000, 113: 5432–5438

    CAS  Google Scholar 

  135. Li QF, Kuo CW, Yang Z, Chen PL, Chou KC. Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys, 2009, 11: 3436–3442

    CAS  Google Scholar 

  136. Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys Chem Chem Phys, 2009, 11: 7729–7737

    CAS  Google Scholar 

  137. Liu WT, Shen YR. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc Natl Acad Sci USA, 2014, 111: 1293–1297

    CAS  Google Scholar 

  138. Jang JH, Jacob J, Santos G, Lee TR, Baldelli S. Image contrast in sum frequency generation microscopy based on monolayer order and coverage. J Phys Chem C, 2013, 117: 15192–15202

    CAS  Google Scholar 

  139. Chung CY, Boik J, Potma EO. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu Rev Phys Chem, 2013, 64: 77–99

    CAS  Google Scholar 

  140. Raghunathan V, Han Y, Korth O, Ge NH, Potma EO. Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett, 2011, 36: 3891–3893

    Google Scholar 

  141. Sakai M, Kikuchi K, Fujii M. Quaternary and secondary structural imaging of a human hair by a VSFG-detected IR super-resolution microscope. Chem Phys, 2013, 419: 261–265

    CAS  Google Scholar 

  142. Smith KA, Conboy JC. A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays. Anal Chem, 2012, 84: 8122–8126

    CAS  Google Scholar 

  143. Inoue K, Fujii M, Sakai M. Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cells. Appl Spectrosc, 2010, 64: 275–281

    CAS  Google Scholar 

  144. Ji N, Zhang K, Yang H, Shen YR. Three-dimensional chiral imaging by sum-frequency generation. J Am Chem Soc, 2006, 128: 3482–3483

    CAS  Google Scholar 

  145. Kubota J, Domen K. Study of the dynamics of surface molecules by time-resolved sum-frequency generation spectroscopy. Anal Bioanal Chem, 2007, 388: 17–27

    CAS  Google Scholar 

  146. Smits M, Ghosh A, Bredenbeck J, Yamamoto S, Muller M, Bonn M. Ultrafast energy flow in model biological membranes. New J Phys, 2007, 9: 390

    Google Scholar 

  147. Arnolds H, Bonn M. Ultrafast surface vibrational dynamics. Surf Sci Rep, 2010, 65: 45–66

    CAS  Google Scholar 

  148. Backus EHG, Eichler A, Kleyn AW, Bonn M. Real-time observation of molecular motion on a surface. Science, 2005, 310: 1790–1793

    CAS  Google Scholar 

  149. McGuire JA, Shen YR. Ultrafast vibrational dynamics at water interfaces. Science, 2006, 313: 1945–1948

    CAS  Google Scholar 

  150. Bredenbeck J, Ghosh A, Nienhuys HK, Bonn M. Interface-specific ultrafast two-dimensional vibrational spectroscopy. Acc Chem Res, 2009, 42: 1332–1342

    CAS  Google Scholar 

  151. Eftekhari-Bafrooei A, Borguet E. Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water. J Am Chem Soc, 2010, 132: 3756–3761

    CAS  Google Scholar 

  152. Rao Y, Xu M, Jockusch S, Turro NJ, Eisenthal KB. Dynamics of excited state electron transfer at a liquid interface using time-resolved sum frequency generation. Chem Phys Lett, 2012, 544: 1–6

    CAS  Google Scholar 

  153. Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu Rev Phys Chem, 2013, 64: 579–603

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuJi Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Luo, Y. Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy. Sci. China Chem. 57, 1646–1661 (2014). https://doi.org/10.1007/s11426-014-5233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5233-5

Keywords

Navigation