Skip to main content
Log in

Single-molecule-force spectroscopy study of the mechanism of interactions between TSP-1 and CD47

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The 4N1K peptide, which is derived from the C-terminal domain of thrombospondin-1 (TSP-1), is usually used as a functional mimic peptide for TSP-1. Knowledge about the interaction force of 4N1K/CD47 is important in explaining how TSP-1 affects the biological effect of CD47. Here we used a single-molecule force spectroscopy (SMFS) technique to explore the interaction of 4N1K/CD47 on both normal and oxidative human red blood cells (hRBCs) at single-molecule level. There was no interaction force between 4N1K and CD47 on normal hRBCs; however, we did find 4N1K-bound CD47 on oxidative hRBCs. We also detected interaction forces for 4N1K/CD47ex (extracellular domain of human CD47), and 4N1K/oxidative CD47ex. The interaction forces of 4N1K/CD47ex were almost consistent with those of 4N1K/oxidative CD47ex at the same loading rate. These results suggest that the conformational change of CD47 is critical for 4N1K-CD47 interaction on oxidative hRBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol, 1993, 123: 485–496

    Article  CAS  Google Scholar 

  2. Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ, Frazier WA. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem, 1996, 271: 21–24

    Article  CAS  Google Scholar 

  3. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA, 1990, 87: 6624–6628

    Article  CAS  Google Scholar 

  4. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med, 2002, 6: 1–12

    Article  CAS  Google Scholar 

  5. Kaur S, Soto-Pantoj DR, Stein EV, Liu C, Elkahloun AG, Pendrak ML, Nicolae A, Singh SP, Nie Z, Levens D, Isenberg JS, Roberts DD. Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep, 2013: 1673

    Google Scholar 

  6. Csanyi G, Yao M, Rodriguez AI, Al Ghouleh I, Sharifi-Sanjani M, Frazziano G, Huang X, Kelley EE, Isenberg JS, Pagano PJ. Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1.1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler Thromb Vasc Biol, 2012, 32: 2966–2973

    Article  CAS  Google Scholar 

  7. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood, 2009, 114: 3413–3421

    Article  CAS  Google Scholar 

  8. Tsai RK, Rodriguez PL, Discher DE. Self inhibition of phagocytosis: the affinity of “marker of self” CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis, 2010, 45: 67–74

    Article  CAS  Google Scholar 

  9. Oldenborg PA, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science, 2000, 288: 2051–2054

    Article  CAS  Google Scholar 

  10. Oldenborg PA, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med, 2001, 193: 855–862

    Article  CAS  Google Scholar 

  11. Olsson M, Nilsson A, Oldenborg PA. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes. Biochem Biophys Res Commun, 2007, 352: 193–197

    Article  CAS  Google Scholar 

  12. Olsson M, Oldenborg PA. CD47 on experimentally senescent murine RBCs inhibits phagocytosis following Fcgamma receptor-mediated but not scavenger receptor-mediated recognition by macrophages. Blood, 2008, 112: 4259–4267

    Article  CAS  Google Scholar 

  13. Burger P, Hilarius-Stokman P, de Korte D, van den Berg TK, van Bruggen R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood, 2012, 119: 5512–5521

    Article  CAS  Google Scholar 

  14. Muller DJ, Krieg M, Alsteens D, Dufrene YF. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol, 2009, 20: 4–13

    Article  Google Scholar 

  15. Shan Y, Huang J, Tan J, Gao G, Liu S, Wang H, Chen Y. The study of single anticancer peptides interacting with HeLa cell membranes by single molecule force spectroscopy. Nanoscale, 2012, 4: 1283–1286

    Article  CAS  Google Scholar 

  16. Shan Y, Hao X, Shang X, Cai M, Jiang J, Tang Z, Wang H. Recording force events of single quantum-dot endocytosis. Chem Commun, 2011, 47: 3377–3379

    Article  CAS  Google Scholar 

  17. Rankl C, Kienberger F, Wildling L, Wruss J, Gruber HJ, Blaas D, Hinterdorfer P. Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci USA, 2008, 105: 17778–17783

    Article  Google Scholar 

  18. Wildling L, Rankl C, Haselgrübler T, Gruber HJ, Holy M, Newman AH, Zou MF, Zhu R, Freissmuth M, Sitte HH, Hinterdorfer P. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J Biol Chem, 2012, 287: 105–113

    Article  CAS  Google Scholar 

  19. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA, 1996, 93: 3477–3481

    Article  CAS  Google Scholar 

  20. Florin EL, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264: 415–417

    Article  CAS  Google Scholar 

  21. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930–933

    Article  Google Scholar 

  22. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol, 2001, 11: 130–135

    Article  CAS  Google Scholar 

  23. Davies MJ. Oxidative damage to proteins. In: Chatgilialoglu C, Studer A. Encyclopedia of Radicals in Chemistry, Biology and Materials. Weinheim: John Wiley & Sons Ltd, 2012

    Google Scholar 

  24. Lyubchenko Y, Shlyakhtenko L, Harrington R, Oden P, Lindsay S. Atomic force microscopy of long DNA imaging in air and under water. Proc Natl Acad Sci USA, 1993, 90: 2137–2140

    Article  CAS  Google Scholar 

  25. Shan Y, Ma S, Nie L, Shang X, Hao X, Tang Z, Wang H. Size-dependent endocytosis of single gold nanoparticles. Chem Commun, 2011, 47: 8091–8093

    Article  CAS  Google Scholar 

  26. Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J, 1997, 72: 1541–1555

    Article  CAS  Google Scholar 

  27. Rotsch C, Jacobson K, Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA, 1999, 96: 921–926

    Article  CAS  Google Scholar 

  28. Riener CK, Kienberger F, Hahn CD, Buchinger GM, Egwim IOC, Haselgrubler T, Ebner A, Romanin C, Klampfl C, Lackner B, Prinz H, Blaas D, Hinterdorfer P, Gruber HJ. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal Chim Acta, 2003, 497: 101–114

    Article  CAS  Google Scholar 

  29. Shen Y, Sun JL, Zhang A, Hu J, Xu LX. A new image correction method for live cell atomic force microscopy. Phys Med Biol, 2007, 52: 2185–2196

    Article  CAS  Google Scholar 

  30. Wang H, Hao X, Shan Y, Jiang J, Cai M, Shang X. Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy, 2010, 110: 305–312

    Article  CAS  Google Scholar 

  31. Bustamante C, Chemla YR, Forde NR, Izhaky D. Mechanical processes in biochemistry. Annu Rev Biochem, 2004, 73: 705–748

    Article  CAS  Google Scholar 

  32. Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM. Reverse engineering of the giant muscle protein titin. Nature, 2002, 418: 998–1002

    Article  CAS  Google Scholar 

  33. Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol, 2002, 319: 433–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Guang Yang or HongDa Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, F., Liu, Y. et al. Single-molecule-force spectroscopy study of the mechanism of interactions between TSP-1 and CD47. Sci. China Chem. 57, 1716–1722 (2014). https://doi.org/10.1007/s11426-014-5232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5232-6

Keywords

Navigation