Skip to main content
Log in

Computer simulation studies on the interactions between nanoparticles and cell membrane

  • Reviews
  • Special Topic Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In recent times, nanoparticles (NPs) have received intense attention not only due to their potential applications as a candidate for drug delivery, but also because of their undesirable effects on human health. Although extensive experimental studies have been carried out in literature in order to understand the interaction between NPs and a plasma membrane, much less is known about the molecular details of the interaction mechanisms and pathways. As complimentary tools, coarse grained molecular dynamics (CGMD) and dissipative particle dynamics (DPD) simulations have been extensively used on the interaction mechanism and evolution pathway. In the present review we summarize computer simulation studies on the NP-membrane interaction, which developed over the last few years, and particularly evaluate the results from the DPD technique. Those studies undoubtedly deepen our understanding of the NP-membrane interaction mechanisms and provide a design guideline for new NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science, 2004, 303: 1818–1822

    CAS  Google Scholar 

  2. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1: 325–327

    CAS  Google Scholar 

  3. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA, 2005, 102: 9469–9474

    CAS  Google Scholar 

  4. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Delivery Rev, 2008, 60: 1307–1315

    CAS  Google Scholar 

  5. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci, 2006, 51: 427–556

    CAS  Google Scholar 

  6. Shubayev VI, Pisanic II TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Delivery Rev, 2009, 61: 467–477

    CAS  Google Scholar 

  7. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol, 2007, 2: 249–255

    CAS  Google Scholar 

  8. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 2004, 11: 169–183

    CAS  Google Scholar 

  9. Serda RE, Gu J, Bhavane RC, Liu X, Chiappini C, Decuzzi P, Ferrari M. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials, 2009, 30: 2440–2448

    CAS  Google Scholar 

  10. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in sirna delivery. Nat Rev Drug Discov, 2009, 8: 129–138

    CAS  Google Scholar 

  11. Yang Z, Liu Z, Allaker R, Reip P, Oxford J, Ahmad Z, Ren G. A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface, 2010, 7: S411–S422

    CAS  Google Scholar 

  12. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release, 2007, 121: 3–9

    CAS  Google Scholar 

  13. Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci, 2003, 6: 252–273

    CAS  Google Scholar 

  14. Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev, 2006, 58: 1655–1670

    CAS  Google Scholar 

  15. Wei W, Ma GH, Hu G, Yu D, Mcleish T, Su ZG, Shen ZY. Preparation of hierarchical hollow CaCo3 particles and the application as anticancer drug carrier. J Am Chem Soc, 2008, 130: 15808–15810

    CAS  Google Scholar 

  16. Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater, 2008, 20: 1630–1635

    CAS  Google Scholar 

  17. Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine, 2011, 6: 1117–1127

    CAS  Google Scholar 

  18. Curtis J, Greenberg M, Kester J, Phillips S, Krieger G. Nano-technology and nanotoxicology. Toxicol Rev, 2006, 25: 245–260

    CAS  Google Scholar 

  19. Donaldson K, Stone V, Tran C, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med, 2004, 61: 727–728

    CAS  Google Scholar 

  20. Kagan VE, Bayir H, Shvedova AA. Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed: Nanotechnol Biol Med, 2005, 1: 313–316

    CAS  Google Scholar 

  21. Kipen HM, Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol-Lung C, 2005, 289: L696–L697

    CAS  Google Scholar 

  22. Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 2011, 6: 929–941

    CAS  Google Scholar 

  23. Krug HF, Wick P. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed, 2011, 50: 1260–1278

    CAS  Google Scholar 

  24. Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci, 2011, 120: S109–S129

    CAS  Google Scholar 

  25. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med, 2010, 267: 89–105

    Google Scholar 

  26. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp, 2005, 113: 823–839

    Google Scholar 

  27. Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology, 2007, 1: 2–25

    Google Scholar 

  28. Zhao Y, Xing G, Chai Z. Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol, 2008, 3: 191–192

    CAS  Google Scholar 

  29. Monteiro-Riviere NA, Tran CL. Nanotoxicology: Characterization, Dosing and Health Effects. New York: Informa Healthcare USA, Inc., 2007

    Google Scholar 

  30. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000, 1: 31–39

    CAS  Google Scholar 

  31. Yue T, Zhang X. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets. Phys Rev E, 2012, 85: 011917

    Google Scholar 

  32. Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut, 2009, 157: 1619–1625

    CAS  Google Scholar 

  33. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res, 2010, 12: 2313–2333

    CAS  Google Scholar 

  34. Pogodin S, Slater NK, Baulin VA. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer. ACS Nano, 2011, 5: 1141–1146

    CAS  Google Scholar 

  35. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol, 2008, 3: 145–150

    CAS  Google Scholar 

  36. Lapotko DO, Lukianova-Hleb EY, Oraevsky AA. Clusterization of nanoparticles during their interaction with living cells. Nanomedicine, 2007, 2: 241–253

    CAS  Google Scholar 

  37. Zhang S, Chen X, Gu C, Zhang Y, Xu J, Bian Z, Yang D, Gu N. The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res Lett, 2009, 4: 70–77

    CAS  Google Scholar 

  38. Ginzburg VV, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett, 2007, 7: 3716–3722

    CAS  Google Scholar 

  39. Pàmies JC, Cacciuto A. Reshaping elastic nanotubes via self-assembly of surface-adhesive nanoparticles. Phys Rev Lett, 2011, 106: 045702

    Google Scholar 

  40. Wi HS, Lee K, Pak HK. Interfacial energy consideration in the organization of a quantum dot-lipid mixed system. J Phys: Condens Matter, 2008, 20: 494211

    Google Scholar 

  41. Xu GK, Feng XQ, Li B, Gao H. Controlled release and assembly of drug nanoparticles via pH-responsive polymeric micelles: a theoretical study. J Phys Chem B, 2012, 116: 6003–6009

    CAS  Google Scholar 

  42. De Meyer FJM, Venturoli M, Smit B. Molecular simulations of lipid-mediated protein-protein interactions. Biophys J, 2008, 95: 1851–1865

    Google Scholar 

  43. Ding HM, Tian WD, Ma YQ. Designing nanoparticle translocation through membranes by computer simulations. ACS Nano, 2012, 6: 1230–1238

    CAS  Google Scholar 

  44. Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423

    CAS  Google Scholar 

  45. Lin X, Li Y, Gu N. Nanoparticle’s size effect on its translocation across a lipid bilayer: a molecular dynamics simulation. J Comput Theor Nanosci, 2010, 7: 269–276

    CAS  Google Scholar 

  46. Lin X, Li Y, Gu N. Molecular dynamics simulations of the interactions of charge-neutral pamam dendrimers with pulmonary surfactant. Soft Matter, 2011, 7: 3882–3888

    CAS  Google Scholar 

  47. Van Lehn RC, Alexander-Katz A. Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers. Soft Matter, 2014, 10: 648–658

    Google Scholar 

  48. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L. Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol, 2008, 3: 363–368

    CAS  Google Scholar 

  49. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol, 2010, 5: 579–583

    CAS  Google Scholar 

  50. Yue T, Li S, Zhang X, Wang W. The relationship between membrane curvature generation and clustering of anchored proteins: a computer simulation study. Soft Matter, 2010, 6: 6109–6118

    CAS  Google Scholar 

  51. Leroueil PR, Hong S, Mecke A, Baker Jr JR, Orr BG, Banaszak Holl MM. Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Accounts Chem Res, 2007, 40: 335–342

    CAS  Google Scholar 

  52. Lu X, Tian Y, Zhao Q, Jin T, Xiao S, Fan X. Integrated metabonomics analysis of the size-response relationship of silica nanoparticlesinduced toxicity in mice. Nanotechnology, 2011, 22: 055101

    Google Scholar 

  53. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology, 2010, 4: 120–137

    CAS  Google Scholar 

  54. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012, 14: 1–16

    CAS  Google Scholar 

  55. Bothun GD. Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol, 2008, 6: 13

    Google Scholar 

  56. Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett, 2007, 7: 1542–1550

    CAS  Google Scholar 

  57. Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res, 2014, 16: 2229

    Google Scholar 

  58. Kurczy ME, Mellander LJ, Najafinobar N, Cans AS. Composition based strategies for controlling radii in lipid nanotubes. Plos One, 2014, 9: e81293

    Google Scholar 

  59. Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 2009, 5: 1408–1413

    CAS  Google Scholar 

  60. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of icam-1-targeted carriers. Mol Ther, 2008, 16: 1450–1458

    CAS  Google Scholar 

  61. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc, 2004, 126: 6520–6521

    CAS  Google Scholar 

  62. Yuan H, Zhang S. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett, 2010, 96: 033704

    Google Scholar 

  63. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash Y, Mukherjee P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett, 2010, 10: 2543–2548

    CAS  Google Scholar 

  64. Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett, 2009, 9: 1080–1084

    CAS  Google Scholar 

  65. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 2007, 28: 2959–2966

    CAS  Google Scholar 

  66. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized mdck cells. Biomacromolecules, 2008, 9: 435–443

    CAS  Google Scholar 

  67. Li Y, Li X, Li Z, Gao H. Surface-structure-regulated penetration of nanoparticles across a cell membrane. Nanoscale, 2012, 4: 3768–3775

    CAS  Google Scholar 

  68. Lipski AM, Pino CJ, Haselton FR, Chen I, Shastri VP. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials, 2008, 29: 3836–3846

    CAS  Google Scholar 

  69. Niu YQ, Wei W, Zheng B, Zhang CX, Meng QT. Symmetrical adhesion of two cylindrical colloids to a tubular membrane. Chin Phys B, 2013, 22: 128701

    Google Scholar 

  70. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small, 2010, 6: 12–21

    CAS  Google Scholar 

  71. Dasgupta S, Auth T, Gompper G. Shape and orientation matter for cellular uptake of non-spherical nanoparticles. Nano Lett, 2014, 14: 687–693

    CAS  Google Scholar 

  72. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31: 438–448

    CAS  Google Scholar 

  73. Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials, 2012, 33: 4965–4973

    CAS  Google Scholar 

  74. Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett, 2011, 11: 5391–5395

    Google Scholar 

  75. Wang B, Zhang L, Bae SC, Granick S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA, 2008, 105: 18171–18175

    CAS  Google Scholar 

  76. Van Lehn RC, Alexander-Katz A. Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: simulations and theory. Soft Matter, 2011, 7: 11392–11404

    Google Scholar 

  77. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18: 410–414

    CAS  Google Scholar 

  78. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2008, 3: 279–290

    Google Scholar 

  79. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci, 2005, 88: 412–419

    CAS  Google Scholar 

  80. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm, 2002, 233: 51–59

    CAS  Google Scholar 

  81. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W. Aptamerconjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem, 2006, 78: 2918–2924

    CAS  Google Scholar 

  82. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005, 5: 331–338

    CAS  Google Scholar 

  83. Qhobosheane M, Santra S, Zhang P, Tan W. Biochemically functionalized silica nanoparticles. Analyst, 2001, 126: 1274–1278

    CAS  Google Scholar 

  84. Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2008, 2: 1639–1644

    CAS  Google Scholar 

  85. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3: 1941–1949

    CAS  Google Scholar 

  86. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA, 2013, 110: 12295–12300

    CAS  Google Scholar 

  87. Gao J, Li S, Zhang X, Wang W. Computer simulations of micelle fission. Phys Chem Chem Phys, 2010, 12: 3219–3228

    CAS  Google Scholar 

  88. Li S, Zhang X, Dong W, Wang W. Computer simulations of solute exchange using micelles by a collision-driven fusion process. Langmuir, 2008, 24: 9344–9353

    CAS  Google Scholar 

  89. Li S, Zhang X, Wang W. Coarse-grained model for mechanosensitive ion channels. J Phys Chem B, 2009, 113: 14431–14438

    CAS  Google Scholar 

  90. Li S, Zhang X, Wang W. Cluster formation of anchored proteins induced by membrane-mediated interaction. Biophys J, 2010, 98: 2554–2563

    CAS  Google Scholar 

  91. Li S, Zheng F, Zhang X, Wang W. Stability and rupture of archaebacterial cell membrane: a model study. J Phys Chem B, 2009, 113: 1143–1152

    CAS  Google Scholar 

  92. Jacobson K, Mouritsen OG, Anderson RG. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol, 2007, 9: 7–14

    CAS  Google Scholar 

  93. Rekvig L, Kranenburg M, Vreede J, Hafskjold B, Smit B. Investigation of surfactant efficiency using dissipative particle dynamics. Langmuir, 2003, 19: 8195–8205

    CAS  Google Scholar 

  94. Shillcock JC, Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles. Nat Mater, 2005, 4: 225–228

    CAS  Google Scholar 

  95. Espanol P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhys Lett, 1995, 30: 191

    CAS  Google Scholar 

  96. Venturoli M, Smit B, Sperotto MM. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J, 2005, 88: 1778–1798

    CAS  Google Scholar 

  97. Park SY, Lytton-Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature, 2008, 451: 553–556

    CAS  Google Scholar 

  98. Chen X, Tian F, Zhang X, Wang W. Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter, 2013, 9: 7592–7600

    CAS  Google Scholar 

  99. Yue T, Zhang X. Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter, 2011, 7: 9104–9112

    CAS  Google Scholar 

  100. Spirin L, Galuschko A, Kreer T, Binder K, Baschnagel J. Polymerbrush lubricated surfaces with colloidal inclusions under shear inversion. Phys Rev Lett, 2011, 106: 168301

    CAS  Google Scholar 

  101. de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA, 2009, 106: 3654–3658

    Google Scholar 

  102. Izvekov S, Voth GA. Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. J Chem Theor Comput, 2006, 2: 637–648

    CAS  Google Scholar 

  103. Jin Y, Wang NX, Yuan B, Sun JS, Li MM, Zheng WF, Zhang W, Jiang XY. Stress-induced self-assembly of complex three dimensional structures by elastic membranes. Small, 2013, 9: 2410–2414

    CAS  Google Scholar 

  104. Porat-Shliom N, Weigert R, Donaldson JG. Endosomes derived from clathrin-independent endocytosis serve as precursors for endothelial lumen formation. Plos One, 2013, 8: e81987

    Google Scholar 

  105. Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2007, 28: 2915–2922

    CAS  Google Scholar 

  106. May S. Theories on structural perturbations of lipid bilayers. Curr Opin Colloid In, 2000, 5: 244–249

    CAS  Google Scholar 

  107. Ollila OS, Risselada HJ, Louhivuori M, Lindahl E, Vattulainen I, Marrink SJ. 3D pressure field in lipid membranes and membraneprotein complexes. Phys Rev Lett, 2009, 102: 078101

    Google Scholar 

  108. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett, 2007, 7: 614–619

    CAS  Google Scholar 

  109. Šarić A, Cacciuto A. Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles. Phys Rev Lett, 2012, 108: 118101

    Google Scholar 

  110. Xing C, Ollila OS, Vattulainen I, Faller R. Asymmetric nature of lateral pressure profiles in supported lipid membranes and its implications for membrane protein functions. Soft Matter, 2009, 5: 3258–3261

    CAS  Google Scholar 

  111. Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S. Interaction between inclusions embedded in membranes. Biophys J, 1996, 71: 648–656

    CAS  Google Scholar 

  112. Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S. Interaction of nanoparticles with lipid membrane. Nano Lett, 2008, 8: 941–944

    CAS  Google Scholar 

  113. Arai N, Yasuoka K, Zeng XC. A vesicle cell under collision with a janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology. Nanoscale, 2013, 5: 9089–9100

    CAS  Google Scholar 

  114. Ou-Yang ZC, Tu ZC. Overview of the study of complex shapes of fluid membranes, the helfrich model and new applications. Int J Mod Phys B, 2014, 28: 1330022

    Google Scholar 

  115. Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles. Phys Rev Lett, 2011, 107: 098101

    Google Scholar 

  116. Shi X, von Dem Bussche A, Hurt RH, Kane AB, Gao H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol, 2011, 6: 714–719

    CAS  Google Scholar 

  117. Huang C, Zhang Y, Yuan H, Gao H, Zhang S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett, 2013, 13: 4546–4550

    CAS  Google Scholar 

  118. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater, 2008, 7: 588–595

    CAS  Google Scholar 

  119. Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B, 2008, 112: 16647–16653

    CAS  Google Scholar 

  120. Ding HM, Ma YQ. Interactions between janus particles and membranes. Nanoscale, 2012, 4: 1116–1122

    CAS  Google Scholar 

  121. Ding HM, Ma YQ. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33: 5798–5802

    CAS  Google Scholar 

  122. Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailänder V. Uptake mechanism of oppositely charged fluorescent nanoparticles in hela cells. Macromol Biosci, 2008, 8: 1135–1143

    CAS  Google Scholar 

  123. Groves JT, Boxer SG, McConnell HM. Lateral reorganization of fluid lipid membranes in response to the electric field produced by a buried charge. J Phys Chem B, 2000, 104: 11409–11415

    CAS  Google Scholar 

  124. Kang SW, Char K, Kang YS. Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes. Chem Mater, 2008, 20: 1308–1311

    CAS  Google Scholar 

  125. Lee H, Larson RG. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B, 2008, 112: 12279–12285

    CAS  Google Scholar 

  126. Li Y, Zhang X, Cao D. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution. J Phys Chem B, 2013, 117: 6733–6740

    CAS  Google Scholar 

  127. Scherer PG, Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry, 1989, 28: 7720–7728

    CAS  Google Scholar 

  128. Tian WD, Ma YQ. Molecular dynamics simulations of a charged dendrimer in multivalent salt solution. J Phys Chem B, 2009, 113: 13161–13170

    CAS  Google Scholar 

  129. Ting CL, Wang ZG. Interactions of a charged nanoparticle with a lipid membrane: implications for gene delivery. Biophys J, 2011, 100: 1288–1297

    CAS  Google Scholar 

  130. White E, Mecklenburg M, Shevitski B, Singer S, Regan B. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 2012, 28: 3695–3698

    CAS  Google Scholar 

  131. Shin EH, Li Y, Kumar U, Sureka HV, Zhang X, Payne CK. Membrane potential mediates the cellular binding of nanoparticles. Nanoscale, 2013, 5: 5879–5886

    CAS  Google Scholar 

  132. Li Y, Gu N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B, 2010, 114: 2749–2754

    CAS  Google Scholar 

  133. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano, 2010, 4: 5421–5429

    CAS  Google Scholar 

  134. Jing B, Zhu Y. Disruption of supported lipid bilayers by semihydrophobic nanoparticles. J Am Chem Soc, 2011, 133: 10983–10989

    CAS  Google Scholar 

  135. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature, 2007, 447: 461–464

    CAS  Google Scholar 

  136. Lipowsky R, Döbereiner HG. Vesicles in contact with nanoparticles and colloids. Europhys Lett, 1998, 43: 219–225

    CAS  Google Scholar 

  137. Yue T, Zhang X. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano, 2012, 6: 3196–3205

    CAS  Google Scholar 

  138. Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett, 2010, 105: 138101

    Google Scholar 

  139. Guo R, Mao J, Yan LT. Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane. ACS Nano, 2013, 7: 10646–10653

    CAS  Google Scholar 

  140. Brittain JE, Mlinar KJ, Anderson CS, Orringer EP, Parise LV. Activation of sickle red blood cell adhesion via integrin-associated protein/Cd47-induced signal transduction. J Clin Invest, 2001, 107: 1555–1562

    CAS  Google Scholar 

  141. Coskun Ü, Simons K. Membrane rafting: from apical sorting to phase segregation. Febs Lett, 2010, 584: 1685–1693

    CAS  Google Scholar 

  142. Dupuy AD, Engelman DM. Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA, 2008, 105: 2848–2852

    CAS  Google Scholar 

  143. Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature, 2009, 459: 379–385

    CAS  Google Scholar 

  144. Yeagle PL. Cholesterol and the cell membrane. BBA-Rev Biomembranes, 1985, 822: 267–287

    CAS  Google Scholar 

  145. Hinderliter A, Biltonen RL, Almeida PF. Lipid modulation of protein-induced membrane domains as a mechanism for controlling signal transduction. Biochemistry, 2004, 43: 7102–7110

    CAS  Google Scholar 

  146. Vihola H, Marttila AK, Pakkanen JS, Andersson M, Laukkanen A, Kaukonen AM, Tenhu H, Hirvonen J. Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly (N-isopropylacrylamide) and poly (N-vinylcaprolactam) or grafted with poly (ethylene oxide)-macromonomer. Int J Pharm, 2007, 343: 238–246

    CAS  Google Scholar 

  147. Hughes S, El Haj AJ, Dobson J. Magnetic micro-and nanoparticle mediated activation of mechanosensitive ion channels. Med Eng Phys, 2005, 27: 754–762

    Google Scholar 

  148. Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, von Rechenberg B, Hottiger MO. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res, 2006, 34: e40–e40

    Google Scholar 

  149. Tian WD, Ma YQ. Ph-responsive dendrimers interacting with lipid membranes. Soft Matter, 2012, 8: 2627–2632

    CAS  Google Scholar 

  150. Ding HM, Ma YQ. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep, 2013, 3: 2804

    Google Scholar 

  151. Ding HM, Ma YQ. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials, 2014, 35: 8703–8710

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianRen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Yue, T., Li, Y. et al. Computer simulation studies on the interactions between nanoparticles and cell membrane. Sci. China Chem. 57, 1662–1671 (2014). https://doi.org/10.1007/s11426-014-5231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5231-7

Keywords

Navigation