Skip to main content
Log in

Logic-signal output of fluorescent proteins for screening antibiotic combinations

  • Articles
  • Special Issue Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new method to screen antibiotic combinations is demonstrated, which takes advantage of the logic-signal output of genetically engineered drug-resistant E. coli strains expressing different fluorescent proteins. Thirty-six antibiotic combinations for nine antibiotics were investigated. The operation of different logic gates can reveal the susceptibility, resistance, or synergistic effect of the antibiotic combinations in a rapid (7–8 h versus 24–28 h for typical growth-based assays), simple, quantitative and high-throughput manner. This logic-signal-based output patterns provide the basis for novel and reliable screening of antibiotic combinations and help us to both gain insight into the mechanisms of multi-drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev, 2005, 105: 395–424

    Article  CAS  Google Scholar 

  2. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 2004, 10: S122–S129

    Article  CAS  Google Scholar 

  3. Smith PA, Romesberg FE. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol, 2007, 3: 549–556

    Article  CAS  Google Scholar 

  4. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010, 8: 423–435

    Article  CAS  Google Scholar 

  5. Pope AJ, Haupts UM, Moore KJ. Homogenous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discovery Today, 1999, 4: 350–362

    Article  CAS  Google Scholar 

  6. Zhu CL, Yang Q, Liu LL, Wang S. Rapid, simple, and high-throughput antimicrobial susceptibility testing and antibiotics screening. Angew Chem Int Ed, 2011, 50: 9607–9610

    Article  CAS  Google Scholar 

  7. Bunz UHF, Rotello VM. Gold nanoparticle-fluorophore complexes: sensitive and discerning “Noses” for biosystems sensing. Angew Chem Int Ed, 2010, 49: 3268–3279

    Article  CAS  Google Scholar 

  8. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods, 2005, 2: 905–909

    Article  CAS  Google Scholar 

  9. Palacios MA, Benito-Peña E, Manesse M, Mazzeo AD, Lafratta CN, Whitesides GM, Walt DR. InfoBiology by printed arrays of micro-organism colonies for timed and on-demand release of messages. Proc Natl Acad Sci, 2011, 108: 16510–16514

    Article  CAS  Google Scholar 

  10. Margulies D, Melman G, Felder CE, Arad-Yellin R, Shanzer A. Chemical input multiplicity facilitates arithmetical processing. J Am Chem Soc, 2004, 126: 15400–15401

    Article  CAS  Google Scholar 

  11. de Silva AP, McClenaghan ND. Molecular-scale logic gates. Chem Eur J, 2004, 10: 574–586

    Article  Google Scholar 

  12. Balzani V, Venturi M, Credi A. Molecular Devices and Machines. A Journey into the Nanoworld. Weinheim: Wiley-VCH, 2003

    Book  Google Scholar 

  13. Kou SZ, Lee HN, van Noort D, Swamy KMK, Kim SH, Soh JH, Lee KM, Nam SW, Yoon JY, Park SS. Fluorescent molecular logic gates using microfluidic devices. Angew Chem Int Ed, 2008, 47: 872–876

    Article  CAS  Google Scholar 

  14. Feng XL, Duan XR, Liu LL, Feng FD, Wang S, Li YL, Zhu DB. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew Chem Int Ed, 2009, 48: 5316–5321

    Article  CAS  Google Scholar 

  15. Tang YL, He F, Wang S, Li YL, Zhu DB, Bazan GC. Multiply configurable optical-logic systems based on cationic conjugated polymer/DNA assemblies. Adv Mater, 2006, 18: 2105–2110

    Article  CAS  Google Scholar 

  16. Ausländer S, Ausländer D, Müller M, Wieland M, Fussenegger M. Programmable single-cell mammalian biocomputers. Nature, 2012, 487: 123–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengTing Lv or Shu Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Liu, L. & Wang, S. Logic-signal output of fluorescent proteins for screening antibiotic combinations. Sci. China Chem. 57, 1696–1702 (2014). https://doi.org/10.1007/s11426-014-5224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5224-6

Keywords

Navigation