Skip to main content
Log in

Dithienocarbazole- and benzothiadiazole-based donor-acceptor conjugated polymers for bulk heterojunction polymer solar cells

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Donor-acceptor (D-A)-conjugated polymers P(BT-C1) and P(BT-C2), with dithieno[2,3-b;7,6-b]carbazole (C1) or dithieno[ 3,2-b;6,7-b]carbazole (C2) as D-unit and benzothiadiazole (BT) as A-unit, were synthesized. The optical bandgaps of the polymers are similar (1.84 and 1.88 eV, respectively). The structures of donor units noticeably influence the energy levels and backbone curvature of the polymers. P(BT-C1) shows a large backbone curvature; its highest occupied molecular orbital (HOMO) energy level is −5.18 eV, whereas P(BT-C2) displays a pseudo-straight backbone and has a HOMO energy level of −5.37 eV. The hole mobilities of the polymers without thermal annealing are 1.9×10−3 and 2.7×10−3 cm2V−1s−1 for P(BT-C1) and P(BT-C2), respectively, as measured by organic thin-film transistors (OTFTs). Polymer solar cells using P(BT-C1) and P(BT-C2) as the donor and phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor were fabricated. Power conversion efficiencies (PCEs) of 4.9% and 5.0% were achieved for P(BT-C1) and P(BT-C2), respectively. The devices based on P(BT-C2) exhibited a higher V oc due to the deeper HOMO level of the polymer, which led to a slightly higher PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao WR, Xue JG. Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci, 2014, 7: 2123–2144

    Article  CAS  Google Scholar 

  2. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22: 3839–3856

    Article  CAS  Google Scholar 

  3. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  4. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  5. Zhou HX, Yang LQ, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45: 607–632

    Article  CAS  Google Scholar 

  6. Zhang ZG, Wang JZ. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J Mater Chem, 2012, 22: 4178–4187

    Article  CAS  Google Scholar 

  7. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  Google Scholar 

  8. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  9. Chao YH, Jheng JF, Wu JS, Wu KY, Peng HH, Tsai MC, Wang CL, Hsiao YN, Wang CL, Lin CY, Hsu CS. Porphyrin-incorporated 2D D-A polymers with over 8.5% polymer solar cell efficiency. Adv Mater, 2014, 26: 5205–5210

    Article  CAS  Google Scholar 

  10. Zhang MJ, Guo X, Ma W, Zhang SQ, Huo LJ, Ade H, Hou JH. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. Adv Mater, 2014, 26: 2089–2095

    Article  CAS  Google Scholar 

  11. Yusoff ARM, Lee SJ, Kim HP, Shneider FK, Silva WJ, Jang J. 8.91% power conversion efficiency for polymer tandem solar cells. Adv Funct Mater, 2014, 24: 2240–2247

    Article  Google Scholar 

  12. Jiang JM, Lin HK, Lin YC, Chen HC, Lan SC, Chang CK, Wei KH. Side chain structure affects the photovoltaic performance of two-dimensional conjugated polymers. Macromolecules, 2014, 47: 70–78

    Article  CAS  Google Scholar 

  13. Li K, Li ZJ, Feng K, Xu XP, Wang LY, Peng Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J Am Chem Soc, 2013, 135: 13549–13557

    Article  CAS  Google Scholar 

  14. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater, 2013, 25: 4944–4949

    Article  CAS  Google Scholar 

  15. Wang N, Chen Z, Wei W, Jiang ZH. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J Am Chem Soc, 2013, 135: 17060–17068

    Article  CAS  Google Scholar 

  16. Guo XG, Zhou NJ, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li SY, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ. Polymer solar cells with enhanced fill factors. Nat Photonics, 2013, 7: 825–833

    Article  CAS  Google Scholar 

  17. Son HJ, Lu LY, Chen W, Xu T, Zheng TY, Carsten B, Strzalka J, Darling SB, Chen LX, Yu LP. Synthesis and photovoltaic effect in dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers. Adv Mater, 2013, 25: 838–843

    Article  CAS  Google Scholar 

  18. Li XH, Choy WCH, Huo LJ, Xie FX, Sha WEI, Ding BF, Guo X, Li YF, Hou JH, You JB, Yang Y. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24: 3046–3052

    Article  CAS  Google Scholar 

  19. Chu TY, Lu JP, Beaupré S, Zhang YG, Pouliot JR, Zhou JY, Najari A, Leclerc M, Tao Y. Effects of the molecular weight and the sidechain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers. Adv Funct Mater, 2012, 22: 2345–2351

    Article  CAS  Google Scholar 

  20. Ye L, Zhang SQ, Zhao WC, Yao HF, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  21. You JB, Dou LT, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun, 2013, 4: 1446–1455

    Article  Google Scholar 

  22. Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater, 2007, 19: 2295–2300

    Article  CAS  Google Scholar 

  23. Liu J, Shao SY, Fang G, Meng B, Xie ZY, Wang LX. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv Mater, 2012, 24: 2774–2779

    Article  CAS  Google Scholar 

  24. Liu J, Shao SY, Meng B, Fang G, Xie ZY, Wang LX, Li XL. Enhancement of inverted polymer solar cells with solution-processed ZnO-TiOx composite as cathode buffer layer. Appl Phys Lett, 2012, 100: 213906

    Article  Google Scholar 

  25. Yang SP, Zhang Y, Jiang T, Sun XF, Lu CQ, Li G, Li XW, Fu GS. Enhancing the power conversion efficiency of PCDTBT:PC71BM polymer solar cells using a mixture of solvents. Chin Sci Bull, 2014, 59: 297–300

    Article  CAS  Google Scholar 

  26. Qin RP, Li WW, Li CH, Du C, Veit C, Schleiermacher HF, Andersson M, Bo ZS, Liu ZP, Inganäs O, Wuerfel U, Zhang FL. A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc, 2009, 131: 14612–14613

    Article  CAS  Google Scholar 

  27. Qin RP, Jiang YR, Ma H, Yang L, Liu HZ, Chang FG. Carbazoles on same main chain for polymer solar cells. J Appl Polym Sci, 2013, 129: 2671–2678

    Article  CAS  Google Scholar 

  28. Ding P, Chu CC, Zou YP, Xiao DQ, Pan CY, Hsu CS. New low bandgap conjugated polymer derived from 2,7-carbazole and 5, 6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzothiadiazole: synthesis and photovoltaic properties. J Appl Polym Sci, 2012, 123: 99–107

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhou HQ, Seifter J, Ying L, Mikhailovsky A, Heeger AJ, Bazan GC, Nguyen TQ. Molecular doping enhances photoconductivity in polymer bulk heterojunction solar cells. Adv Mater, 2013, 25: 7038–7044

    Article  CAS  Google Scholar 

  30. Meng B, Fang G, Fu YY, Xie ZY, Wang LX. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics. Nanotechnology, 2013, 24: 484004

    Article  Google Scholar 

  31. Chang CY, Cheng YJ, Hung SH, Wu JS, Kao WS, Lee CH, Hsu CS. Combination of molecular, morphological, and interfacial engineering to achieve highly efficient and stable plastic solar cells. Adv Mater, 2012, 24: 549–553

    Article  CAS  Google Scholar 

  32. Wu JS, Cheng YJ, Lin TY, Chang CY, Shih PI, Hsu CS. Dithienocarbazolebased ladder-type heptacyclic arenes with silicon, carbon, and nitrogen bridges: synthesis, molecular properties, fieldeffect transistors, and photovoltaic applications. Adv Funct Mater, 2012, 22: 1711–1722

    Article  CAS  Google Scholar 

  33. Jacob J, Sax S, Piok T, List EJW, Grimsdale AC, Müllen K. Laddertype pentaphenylenes and their polymers: efficient blue-light emitters and electron-accepting materials via a common intermediate. J Am Chem Soc, 2004, 126: 6987–6995

    Article  CAS  Google Scholar 

  34. Mishra AK, Graf M, Grasse F, Jacob J, List EJW, Müllen K. Blue-emitting carbon- and nitrogen-bridged poly(ladder-type tetraphenylene) s. Chem Mater, 2006, 18: 2879–2885

    Article  CAS  Google Scholar 

  35. Cheng YJ, Ho YJ, Chen CH, Kao WS, Wu CE, Hsu SL, Hsu CS. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 2012, 45: 2690–2698

    Article  CAS  Google Scholar 

  36. Chen CH, Cheng YJ, Chang CY, Hsu CS. Donor-acceptor random copolymers based on a ladder-type nonacyclic unit: synthesis, characterization, and photovoltaic applications. Macromolecules, 2011, 44: 8415–8424

    Article  CAS  Google Scholar 

  37. Ando SJ, Nishida JI, Tada H, Inoue YJ, Tokito S, Yamashita Y. High performance n-type organic field-effect transistors based on π-elec tronic systems with trifluoromethylphenyl groups. J Am Chem Soc, 2005, 127: 5336–5337

    Article  CAS  Google Scholar 

  38. Liang YY, Wu Y, Feng DQ, Tsai ST, Son HJ, Li G, Yu LP. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2009, 131: 56–57

    Article  CAS  Google Scholar 

  39. Koster LJA, Shaheen SE, Hummelen JC. Pathways to a new efficiency regime for organic solar cells. Adv Energy Mater, 2012, 2: 1246–1253

    Article  CAS  Google Scholar 

  40. Chen YG, Tian HK, Yan DH, Geng YH, Wang FS. Conjugated polymers based on a S- and N-containing heteroarene: synthesis, characterization, and semiconducting properties. Macromolecules, 2011, 44: 5178–5185

    Article  CAS  Google Scholar 

  41. Chen YG, Liu CF, Tian HK, Bao C, Zhang XJ, Yan DH, Geng YH, Wang FS. Novel conjugated polymers based on dithieno[3,2-b: 6,7-b]carbazole for solution processed thin-film transistors. Macromol Rapid Commun, 2012, 33: 1759–1764

    Article  CAS  Google Scholar 

  42. Deng YF, Chen YG, Zhang XJ, Tian HK, Bao C, Yan DH, Geng YH, Wang FS. Donor-acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules, 2012, 45: 8621–8627

    Article  CAS  Google Scholar 

  43. Deng YF, Chen YG, Liu J, Liu LH, Tian HK, Xie ZY, Geng YH, Wang FS. Low-band-gap conjugated polymers of dithieno [2,3-b:7, 6-b]carbazole and diketopyrrolopyrrole: effect of the alkyl side chain on photovoltaic properties. ACS Appl Mater Interfaces, 2013, 5: 5741–5747

    Article  CAS  Google Scholar 

  44. Deng YF, Liu J, Wang JT, Liu LH, Li WL, Tian HK, Zhang XJ, Xie ZY, Geng YH, Wang FS. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater, 2014, 26: 471–476

    Article  CAS  Google Scholar 

  45. Jespersen KG, Beenken WJD, Zaushitsyn Y, Yartsev A, Andersson M, Pullerits T, Sundström V. The electronic states of polyfluorene copolymers with alternating donor-acceptor units. J Chem Phys, 2004, 121: 12613–12617

    Article  CAS  Google Scholar 

  46. Peet J, Cho NS, Lee SK, Bazan GC. Transition from solution to the solid state in polymer solar cells cast from mixed solvents. Macromolecules, 2008, 41: 8655–8659

    Article  CAS  Google Scholar 

  47. Kim JG, Yun MH, Kim GH, Lee JH, Lee SM, Ko SJ, Kim YH, Dutta GK, Moon MJ, Park SY, Kim DS, Kim JY, Yang CD. Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control. ACS Appl Mater Interfaces, 2014, 6: 7523–7534

    Article  CAS  Google Scholar 

  48. Casey A, Ashraf RS, Fei ZP, Heeney M. Thioalkyl-substituted benzothiadiazole acceptors: copolymerization with carbazole affords polymers with large stokes shifts and high solar cell voltages. Macromolecules, 2014, 47: 2279–2288

    Article  CAS  Google Scholar 

  49. Lee WH, Kim GH, Ko SJ, Yum SJ, Hwang SG, Cho S, Shin YH, Kim JY, Woo HY. Semicrystalline D-A copolymers with different chain curvature for applications in polymer optoelectronic devices. Macromolecules, 2014, 47: 1604–1612

    Article  CAS  Google Scholar 

  50. Zuo GZ, Li ZJ, Zhang MJ, Guo X, Wu Y, Zhang SQ, Peng B, Wei W, Hou JH. Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polym Chem, 2014, 5: 1976–1981

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhou Geng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Z., Deng, Y., Xie, Z. et al. Dithienocarbazole- and benzothiadiazole-based donor-acceptor conjugated polymers for bulk heterojunction polymer solar cells. Sci. China Chem. 58, 294–300 (2015). https://doi.org/10.1007/s11426-014-5221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5221-9

Keywords

Navigation