Skip to main content
Log in

Dissipative particle dynamics thermostat: a novel thermostat for molecular dynamics simulation of liquid crystals with Gay-Berne potential

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The Gay-Berne (GB) model has been proved to be highly successful in the simulation of liquid crystal phases via both molecular dynamics (MD) and nonequilibrium molecular dynamics (NEMD). However, the conventional thermostats used in the simulations of GB systems, such as Nosé-Hoover and Langevin thermostats, have serious shortcomings especially in NEMD simulations. Recently, dissipative particle dynamics (DPD) has established itself as a useful thermostat for soft matter simulations, whereas the application of DPD thermostat in (NE)MD simulations is limited to the spherically isotropic potential models, such as the Lennard-Jones model. Considering the virtues of the DPD thermostat, that is, local, momentum conserved, and Galilean invariant, we extend the DPD thermostat to the non-spherical GB model. It is interesting to find that the translational DPD and rotational DPD thermostats can be used in the GB system independently and both can achieve the thermostatting effects. Also, we compared the performance of the DPD thermostat with other commonly used thermostats in NEMD simulations by investigating the streaming velocity profiles and the dynamics of phase separation in a typical but simple binary GB mixture under shear field. It is revealed that the known virtues of DPD thermostats, such as Galilean invariant, shear velocity profile-unbiased, and unscreened hydrodynamic interactions, are still intact when applying to GB systems. Finally, the appropriate parameters for the DPD thermostat in the GB system are identified for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sage IC, Crossland WA, Wilkinson TD, Gleeson HF, Leigh WJ, Workentin MS. Handbook of Liquid Crystals, 1st ed. Weinheim, Germany: Wiley-VCH, 1998, Volume 1, 731–895

    Book  Google Scholar 

  2. Wilson MR. Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev, 2007, 36:1881–1888

    Article  CAS  Google Scholar 

  3. Zhang JG, Su JY and Guo HX. An atomistic simulation for 4-Cyano-4′-pentylbiphenyl and its homologue with a reoptimized force field. J Phys Chem B, 2011, 115: 2214–2227.

    Article  CAS  Google Scholar 

  4. Zhang JG, Su JY, Ma YP and Guo HX. Coarse-grained molecular dynamics simulations of the phase behavior of the 4-cyano-4′-pentylbiphenyl liquid crystal system. J Phys Chem B, 2012, 116: 2075–2089

    Article  CAS  Google Scholar 

  5. Zhang ZM and Guo HX. The phase behavior, structure, and dynamics of rodlike mesogens with various flexibility using dissipative particle dynamics simulation. J Chem Phys, 2010, 133: 144911

    Article  Google Scholar 

  6. Komolkin A, Laaksonen A, and Maliniak A. Molecular dynamics simulation of a nematic liquid crystal. J Chem Phys, 1994, 101, 4103–4116

    Article  CAS  Google Scholar 

  7. Berne B, Pechukas P. Gaussian model potentials for molecular interactions. J Chem Phys, 1972, 56: 4213–4216

    Article  CAS  Google Scholar 

  8. Gay J, Berne B. Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys, 1981, 74: 3316–3319

    Article  CAS  Google Scholar 

  9. Adams, DJ, Luckhurst, GR, Phippen, RW. Computer simulation studies of anisotropic systems. XVII. The Gay-Berne model nematogen. Mol Phys, 1987, 61: 1575–1580

    Article  CAS  Google Scholar 

  10. Miguel ED, Rull LF, Chalam MK and Gubbins KE. Liquid crystal phase diagram of the Gay-Berne fluid. Mol Phys, 1991, 74: 405–424.

    Article  Google Scholar 

  11. Luckhurst GR, Stephens RA, Phippen RW. Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen. Liq Cryst, 1990, 8: 451–464

    Article  CAS  Google Scholar 

  12. Wu C. Molecular dynamics simulation of liquid cystals: phase transition and hydrodynamics. Doctor Dissertation. Beijing: Peking University, 2007

    Google Scholar 

  13. Bates MA and Luckhurst GR. The phase behaviour and structure of a Gay-Berne mesogen. J Chem Phys, 1999, 110: 7087–7108.

    Article  CAS  Google Scholar 

  14. Wu C, Qian T, and Zhang P. Nonequilibrium-molecular-dynamics measurement of the Leslie coefficients of a Gay-Berne nematic liquid crystal. Liq Cryst, 2007, 34: 1175–1184

    Article  CAS  Google Scholar 

  15. Luckhurst GR and Satoh K. The director and molecular dynamics of the field-induced alignment of a Gay-Berne nematic phase: an isothermal-isobaric nonequilibrium molecular dynamics simulation study. J Chem Phys 2010, 132: 184903

    Article  Google Scholar 

  16. Sarman S and Evans DJ. Statistical mechanics of viscous flow in nematic fluids. J Chem Phys 1993, 99: 9021–9036.

    Article  CAS  Google Scholar 

  17. Evans D and Morriss G. Statistical Mechanics of Nonequilibrium Liquids. London: Academic Press, 1990

    Google Scholar 

  18. Ilnytskyi JM and Wilson MR. A domain decomposition molecular dynamics program for the simulation of flexible molecules with an arbitrary topology of Lennard-Jones and/or Gay-Berne sites. Comput Phys Commun, 2002, 148: 43–58

    Article  CAS  Google Scholar 

  19. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984, 52: 255–268

    Article  Google Scholar 

  20. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A, 1985, 31: 1695–1697

    Article  Google Scholar 

  21. Soddemann T, Dünweg B and Kremer K. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E, 2003, 68: 046702

    Article  Google Scholar 

  22. Evans DJ, Hoover WG, Failor BH, Moran B and Ladd AJC. Non-equilibrium molecular dynamics via Gauss’ principle of least constraint. Phys Rev A, 1983, 28: 1016–1021

    Article  CAS  Google Scholar 

  23. Groot RD, Madden TJ and Tildesley DJ. On the role of hydrodynamic interactions in block copolymer microphase separation. J Chem Phys, 1999, 110: 9739–9749

    Article  CAS  Google Scholar 

  24. Grest GS and Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A, 1986, 33: 3628–3631

    Article  CAS  Google Scholar 

  25. Priezjev NV, Darhuber AA and Troian SM. Slip behavior in liquid films on surfaces of patterned wettability: comparison between con tinuum and molecular dynamics simulations. Phys Rev E, 2005, 71: 041608

    Article  Google Scholar 

  26. Priezjev NV and Troian SM. Molecular origin and dynamic behavior of slip in sheared polymer films. Phys Rev Lett, 2004, 92: 18302

    Article  Google Scholar 

  27. Thompson TA and Robbins MO. Shear flow near solids: epitaxial order and flow boundary conditions. Phys Rev A, 1990, 41: 6830

    Article  CAS  Google Scholar 

  28. Pastorino C, Kreer T, Müller M and Binder K. Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems. Phys Rev E, 2007, 76: 026706

    Article  CAS  Google Scholar 

  29. Hoogerbrugge PJ and Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett, 1992, 19: 155–160

    Article  Google Scholar 

  30. Espanol P and Warren P. Statistical-mechanics of dissipative particle dynamics. Europhys Lett, 1995, 30: 191–196

    Article  CAS  Google Scholar 

  31. Guo HX. Nonequilibrium molecular dynamics simulation study on the orientation transition in the amphiphilic lamellar phase under shear flow. J Chem Phys, 2006, 125: 214902

    Article  Google Scholar 

  32. Guo HX. Shear-induced parallel-to-perpendicular orientation in the amphiphilic lamellar phase: a nonequilibrium molecular-dynamics simulation study. J Chem Phys, 2006, 124: 054902

    Article  Google Scholar 

  33. Guo HX and Kremer K. Kinetics of the shear-induced isotropic-to-lamellar transition of an amphiphilic model system: a nonequilibrium molecular dynamics simulation study. J Chem Phys 2007, 127: 054902

    Article  Google Scholar 

  34. Pan WX, Pivkin IV and Karniadakis GE. Single-particle hydrodynamics in DPD: a new formulation. Europhys Lett, 2008, 84: 10012

    Article  Google Scholar 

  35. Takatsu H. Development and industrialization of liquid crystal materials. Mol Cryst Liq Cryst, 2006, 458: 17–26

    Article  CAS  Google Scholar 

  36. Brown JT, Allen MP, del Río EM and de Miguel E. Effects of elongation on the phase behaviour of the Gay-Berne fluid. Phys Rev E, 1998, 57: 6685–6699

    Article  CAS  Google Scholar 

  37. Groot RD and Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423–4435

    Article  CAS  Google Scholar 

  38. Antypov D and Cleaver DJ. The role of attractive interactions in rod-sphere mixtures. J Chem Phys, 2004, 120: 10307–10316

    Article  CAS  Google Scholar 

  39. Laradji M, Mouritsen OG, Toxvaerd S, Zuckermann MJ. Molecular dynamics simulations of phase separation in the presence of surfactants. Phys Rev E, 1994, 50: 1243–1252

    Article  CAS  Google Scholar 

  40. Evans DJ, Cui ST, Hanley HJM and Straty GC. Conditions for the existence of a reentrant solid phase in a sheared atomic fluid. Phys Rev A, 1992, 46: 6731–6734

    Article  CAS  Google Scholar 

  41. Dvinskikh SV and Furó I. Anisotropic self-diffusion in the nematic phase of a thermotropic liquid crystal by 1H-spin-echo nuclear magnetic resonance. J Chem Phys, 2001, 115: 1946–1950

    Article  CAS  Google Scholar 

  42. Dvinskikh SV, Furó I, Zimmermann H and Maliniak A. Anisotropic self-diffusion in thermotropic liquid crystals studied by 1H and 2H pulse-field-gradient spin-echo NMR. Phys Rev E, 2002, 65: 061701

    Article  CAS  Google Scholar 

  43. Kamata K, Araki T and Tanaka H. Hydrodynamic selection of the kinetic pathway of a polymer coil-globule transition. Phys Rev Lett, 2009, 102: 108303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongXia Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Hao, L., Ma, Y. et al. Dissipative particle dynamics thermostat: a novel thermostat for molecular dynamics simulation of liquid crystals with Gay-Berne potential. Sci. China Chem. 58, 694–707 (2015). https://doi.org/10.1007/s11426-014-5198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5198-4

Keywords

Navigation