Skip to main content
Log in

Hemin-histamine-montmorillonite clay conjugate as a model biocatalyst to mimic natural peroxidase

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We successfully synthesized the first hemin-montmorillonite bio-conjugate with an amino acid residue to mimic natural peroxidase enzyme. Histamine was intercalated in montmorillonite by cation exchange, then a hemin molecule was loaded onto the histamine-montmorillonite with an adsorption capacity of 7.0 mg g−1. The hemin-histamine-montmorillonite conjugate shows high peroxidase activity as indicated by the oxidation of guaiacol, which is attributed to the activation of hemin by Fe-N complex formation between the imidazole group in histamine and the iron ion in the hemin molecule. Temperature-dependent peroxidase activity for this synthesized biomimetic material indicates that raising the reaction temperature could significantly enhance the activity of the conjugate. The biomimetic catalyst has good reusability; nearly 100% activity can be retained after three cycles. Because montmorillonite clay is widely distributed in the environment, this material offers great potential for in situ and ex situ remediation of many organic contaminants in surface/subsurface soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denisov I, Makris T, Sligar S, Schlichting I. Structure and chemistry of cytochrome P450. Chem Rev, 2005, 105: 2253–2277

    Article  CAS  Google Scholar 

  2. Costas M, Mehn MP, Jensen MP, Que L Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev, 2004, 104: 939–986

    Article  CAS  Google Scholar 

  3. Meunier B, de Visser S, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev, 2004, 104: 3947–3980

    Article  CAS  Google Scholar 

  4. Nam W. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc Chem Res, 2007, 40: 522–531

    Article  CAS  Google Scholar 

  5. Roth J, Cramer C. Direct examination of H2O2 activation by a heme peroxidase. J Am Chem Soc, 2008, 130: 7802–7803

    Article  CAS  Google Scholar 

  6. Shintaku M, Matsuura K, Yoshioka S, Takahashi S, Ishimori K, Morishima I. Absence of a detectable intermediate in the compound I formation of horseradish peroxidase at ambient temperature. J Biol Chem, 2005, 280: 40934–40938

    Article  CAS  Google Scholar 

  7. Kazunga C, Aitken M, Gold A. Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol. Environ Sci Technol, 1999, 33: 1408–1412

    Article  CAS  Google Scholar 

  8. Samokyszyn V, Freeman J, Maddipati K, Lloyd R. Peroxidase-catalyzed oxidation of pentachlorophenol. Chem Res Toxicol, 1995, 8: 349–355

    Article  CAS  Google Scholar 

  9. Dai J, Wright M. Manderville R. An oxygen-bonded C8-deoxyguanosine nucleoside adduct of pentachlorophenol by peroxidase activation: evidence for ambident C8 reactivity by phenoxyl radicals. Chem Res Toxicol, 2003, 16: 817–821

    Article  CAS  Google Scholar 

  10. Kazunga C, Aitken M, Gold A. Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol. Environ Sci Technol, 1999, 33: 1408–1412

    Article  CAS  Google Scholar 

  11. Samokyszyn V, Freeman J, Maddipati K, Lloyd R. Peroxidase-catalyzed oxidation of pentachlorophenol. Chem Res Toxicol, 1995, 8: 349–355

    Article  CAS  Google Scholar 

  12. Dai J, Wright M. Manderville R. An oxygen-bonded C8-deoxyguanosine nucleoside adduct of pentachlorophenol by peroxidase activation: evidence for ambident C8 reactivity by phenoxyl radicals. Chem Res Toxicol, 2003, 16: 817–821

    Article  CAS  Google Scholar 

  13. Niu J, Xu J, Dai Y, Xu J, Guo H, Sun K, Liu R. Immobilization of horseradish peroxidase by electrospun fibrous membranes for adsorption and degradation of pentachlorophenol in water. J Hazad Mater, 2013, 246-247: 119–125

    Article  CAS  Google Scholar 

  14. Colosi LM, Pinto RA, Huang QG, Weber WJ Jr. Peroxidase-mediated degradation of perfluorooctanoic acid. Environ Toxicol Chem, 2009, 28: 264–271

    Article  CAS  Google Scholar 

  15. Kumar C, Chaudhari A. High temperature peroxidase activities of HRP and hemoglobin in the galleries of layered Zr(IV)phosphate. Chem Commun, 2002, 20: 2382–2383

    Article  Google Scholar 

  16. Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res, 2014, 47: 1097–1105

    Article  CAS  Google Scholar 

  17. Wang X, Chrzanowski M, Yuan D, Sweeting B, Ma S. Covalent heme framework as a highly active heterogeneous biomimetic oxidation catalyst. Chem Mater, 2014, 26: 1639–1644

    Article  CAS  Google Scholar 

  18. Lu C, Qi X, Orbach R, Yang H, Mironi-Harpaz I, Seliktar D, Willner I. Switchable catalytic acrylamide hydrogels cross-linked by hemin/ G-quadruplexes. Nano Lett, 2013, 13:1298–1302

    Article  CAS  Google Scholar 

  19. Zhu L, Li C, Zhu Z, Liu D, Zou Y, Wang C, Fu H, Yang CY. In vitro selection of highly efficient G-quadruplex-based DNA enzymes. Anal Chem, 2012, 84: 8383–8390

    Article  CAS  Google Scholar 

  20. Kotchey G, Hasan S, Kapralov A, Ha S, Kim K, Shvedova A, Kagan V, Star A. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res, 2012, 45: 1770–1781

    Article  CAS  Google Scholar 

  21. Huang Y, Ma W, Li J, Cheng M. Zhao J. A novel β-CD-hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation. J Phys Chem B, 2003, 107: 9409–9419

    Article  CAS  Google Scholar 

  22. Jiang Z, Liu X, Bu J. Removal of 2,4,6-trichlorophenol by iron and manganese oxides/granular activated carbon with H2O2. Adv Mater Res, 2010, 154-155: 28–33

    Article  Google Scholar 

  23. Vinita M, Praveena Juliya Dorathi R, Palanivelu K. Degradation of 2,4,6-trichlorophenol by photo Fenton’s like method using nano heterogeneous catalytic ferric ion. Sol Energy, 2010, 84: 1613–1618

    Article  CAS  Google Scholar 

  24. Díaz-Díaz G, Celis-García M, Carmen Blanco-López M, Jesús Lobo-Castañón M, Miranda-Ordieres A, Tuñón-Blanco P. Heterogeneous catalytic 2, 4, 6-trichlorophenol degradation at hemin-acrylic copolymer. Appl Catal B: Environ, 2010, 96: 51–56

    Article  Google Scholar 

  25. Hu P, Han L, Dong S. A facile one-pot method to synthesize a polypyrrole/hemin nanocomposite and its application in biosensor, dye removal, and photothermal therapy. ACS Appl Mater Inter, 2014, 6: 500–506

    Article  CAS  Google Scholar 

  26. Wang Q, Yang Z, Zhang X, Xiao X, Chang C, Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed, 2007, 46: 4285–4289

    Article  CAS  Google Scholar 

  27. Gharibi H, Moosavi-Movahedi Z, Javadian S, Nazari K, Moosavi-Movahedi A. Vesicular mixed gemini-SDS-hemin-imidazole complex as a peroxidase-like nano artificial enzyme. J Phys Chem B, 2011, 115: 4671–4679

    Article  CAS  Google Scholar 

  28. Xue T, Jiang S, Qu Y, Su Q, Cheng R, Dubin S, Chiu C, Kaner R, Huang Y, Duan X. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew Chem Int Ed, 2012, 51: 3822–3825

    Article  CAS  Google Scholar 

  29. Bhattacharyya D, Banerjee R. Chemical and kinetic evidence for an essential histidine in horseradish peroxidase for iodide oxidation. J Biol Chem, 1992, 267: 9800–9804

    CAS  Google Scholar 

  30. Bhattacharyya D, Bandyopadhyay U, Banerjee R. Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I. J Biol Chem, 1993, 268: 22292–22298

    CAS  Google Scholar 

  31. Hartmann C, Montellano R. Baculovirus expression and characterization of catalytically active horseradish peroxidase. Biochem Biophys, 1992, 297: 61–72

    Article  CAS  Google Scholar 

  32. Howes B, Rodriguez-Lopez J, Smith A, Smulevich G. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Biochem, 1997, 36: 1532–1543

    Article  CAS  Google Scholar 

  33. La Mar G, Hernandez G, de Ropp J. Proton NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase. Biochem, 1992, 31: 9158–9168

    Article  Google Scholar 

  34. Newmyer S, Ortiz de Montellano P. Horseradish peroxidase His-42 →Ala, His-42 →Val, and Phe-41→Ala mutants. Histidine catalysis and control of substrate access to the heme iron. J Biol Chem, 1995, 270: 19430–19438

    Article  CAS  Google Scholar 

  35. Savenkova M, Newmyer S, Ortiz de Montellano P. Rescue of His-42 →Ala horseradish peroxidase by a Phe-41→His mutation engineering of a surrogate catalytic histidine. J Biol Chem, 1996, 271: 24598–24603

    Article  CAS  Google Scholar 

  36. Uno T, Takeda A, Shimabayashi S. Effects of imidazoles and pH on the peroxidase activity of the hemin-hydrogen peroxide system. Inorg Chem, 1995, 34: 1599–1607

    Article  CAS  Google Scholar 

  37. Veitch N, Smith A. Horseradish peroxidase. Adv Inorg Chem, 2001, 51: 107–162

    Article  CAS  Google Scholar 

  38. Newmyer S, Sun J, Loehr T, Ortizde Montellano P. Rescue of the horseradish peroxidase His-170→Ala mutant activity by imidazole: importance of proximal ligand tethering. Biochem, 1996, 35: 12788–12795

    Article  CAS  Google Scholar 

  39. Rodriguez-Lopez J, Smith A, Thorneley R. Effect of distal cavity mutations on the binding and activation of oxygen by ferrous horseradish peroxidase. J Biol Chem, 1997, 272: 389–395

    Article  CAS  Google Scholar 

  40. Itoh T, Yamada T, Kodera Y, Matsushima A, Hiroto M, Sakurai K, Nishimura H, Inada Y. Hemin (Fe3+)-and Heme (Fe2+)-Smectite conjugates as a model of hemoprotein based on spectrophotometry. Bioconjuge Chem, 2001, 12: 3–6

    Article  CAS  Google Scholar 

  41. Kurosawa M, Itoh T, Kodera Y, Matsushima A, Hiroto M, Nishimura H, Inada Y. Formation of a bioconjugate composed of hemin, smectite, and quaternary ammonium chloride that is soluble and active in hydrophobic media. Bioconjugate Chem, 2002, 13: 167–171

    Article  CAS  Google Scholar 

  42. Arroyo L, Li H, Teppen B, Body S. A simple method for partial purification of reference clays. Clay Clay Mater, 2005, 53: 511–519

    Article  CAS  Google Scholar 

  43. Vianelloab R, Mavri J. Microsolvation of the histamine monocation in aqueous solution: the effect on structure, hydrogen bonding ability and vibrational spectrum. New J Chem, 2012, 36: 954–962

    Article  Google Scholar 

  44. Tapia O, Cárdenas R, Smeyers Y, Hernández-Laguna A, Hernández-Laguna A, Rández J, Rández F. Exploring the potential energy hypersurface of histamine monocation: tautomerism in gas phase. Int J Quantum Chem, 1990, 38: 727–740

    Article  CAS  Google Scholar 

  45. Kulshrestha P, Giese RF Jr, Aga DS. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol, 2004, 38: 4097–4105

    Article  CAS  Google Scholar 

  46. Parida K, Varadwaj G, Sahu S, Sahoo P. Schiff base Pt(II) complex intercalated montmorillonite: a robust catalyst for hydrogenation of aromatic nitro compounds at room temperature. Ind Eng Chem Res, 2011, 50: 7849–7856

    Article  CAS  Google Scholar 

  47. Collado J, Ramirez F. Vibrational spectra and assignments of histamine dication in the solid state and in solution. J Raman Spectrosc, 2000, 31: 925–931

    Article  CAS  Google Scholar 

  48. Collado J, Ramirez F. Infrared and Raman spectra of histamine-NH4 and histamine-ND4 monohydrochlorides. J Raman Spectrosc, 1999, 30: 391–397

    Article  CAS  Google Scholar 

  49. Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol, 1998, 5: 505–517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gu, C., Xiong, J. et al. Hemin-histamine-montmorillonite clay conjugate as a model biocatalyst to mimic natural peroxidase. Sci. China Chem. 58, 731–737 (2015). https://doi.org/10.1007/s11426-014-5196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5196-6

Keywords

Navigation