Skip to main content
Log in

Applications of pillarenes, an emerging class of synthetic macrocycles

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Synthetic macrocycles, a typical type of building block for molecular recognition and self-assembly, are crucial to supramolecular chemistry and materials science. Since 2008, a new generation of synthetic macrocyclic hosts, pillarenes and their abundant derivatives, which consist of hydroquinone units linked by methylene bridges at 2,5-positions, have been the focus of much research. Numerous studies on their host-guest properties and the fabrication of supramolecular assemblies have demonstrated that pillarenes and their derivatives possess many advantages that facilitate their applications in many research fields. Herein we summarize and classify the applications of pillarenes in terms of artificial transmembrane channels, controlled delivery systems, dispersion of carbon hybrid materials, extraction and absorption, liquid crystals, metal-organic frameworks, sensing and detection, stabilization of nanoparticles (Au/Ag/CdTe), and other typical biological applications. We also provide an overview of future developments in pillarene chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kueh HY, Mitchison TJ. Structural plasticity in actin and tubulin polymer dynamics. Science, 2009, 325: 960–963

    Article  CAS  Google Scholar 

  2. Sendai T, Biswas S, Aida T. Photoreconfigurable supramolecular nanotube. J Am Chem Soc, 2013, 135: 11509–11512

    Article  CAS  Google Scholar 

  3. Cragg PJ, Sharma K. Pillar[5]arenes: fascinating cyclophanes with a bright future. Chem Soc Rev, 2012, 41: 597–607

    Article  CAS  Google Scholar 

  4. Ogoshi T. Synthesis of novel pillar-shaped cavitands “pillar[5] arenes” and their application for supramolecular materials. J Incl Phenom Macrocycl Chem, 2012 72: 247–262

    Article  CAS  Google Scholar 

  5. Tan LL, Zhang Y, Li B, Wang K, Zhang SXA, Tao Y Yang YW. Selective recognition of “solvent” molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces. New J Chem, 2014, 38: 845–851

    Article  CAS  Google Scholar 

  6. Wikipedia. The free encyclopedia. http://en.wikipedia.org/wiki/Pillararene

  7. Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. Para-bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc, 2008, 130: 5022–5023

    Article  CAS  Google Scholar 

  8. Wang K, Tan LL, Chen DX, Song N, Xi G, Zhang SXA, Li C, Yang YW. One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study. Org Biomol Chem, 2012, 10: 9405–9409

    Article  CAS  Google Scholar 

  9. Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew Chem Int Ed, 2009, 48: 9721–9723

    Article  CAS  Google Scholar 

  10. Wang K, Yang YW, Zhang SXA. Research progress on the synthesis of pillar[n]arenes and their host-guest chemistry. Chem J Chin Univ, 2012, 33: 1–13

    Article  Google Scholar 

  11. Cao D, Meier H. Pillar[n]arenes: a novel, highly promising class of macrocyclic host molecules. Asian J Org Chem, 2014, 3: 244–262

    Article  CAS  Google Scholar 

  12. Tao H, Cao D, Liu L, Kou Y, Wang L, Meier H. Synthesis and host-guest properties of pillar[6]arenes. Sci China Chem, 2012, 55: 223–228

    Article  CAS  Google Scholar 

  13. Ogoshi T, Yamagishi T. Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host-guest interactions. Chem Commun, 2014, 50: 4776–4787

    Article  CAS  Google Scholar 

  14. Xue M, Yang Y, Chi X, Zhang Z, Huang F. Pillararenes, a new class of mcrocycles for supramolecular chemistry. Acc Chem Res, 2012, 45: 1294–1308

    Article  CAS  Google Scholar 

  15. Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc, 2012, 134: 19489–19497

    Article  CAS  Google Scholar 

  16. Nishimura T, Sanada Y, Matsuo T, Okobira T, Mylonas E, Yagic N, Sakurai K. A bimolecular micelle constructed from amphiphilic pillar[5]arene molecules. Chem Commun, 2013, 49: 3052–3054

    Article  CAS  Google Scholar 

  17. Xu JF, Chen YZ, Wu LZ, Tung CH, Yang QZ. Dynamic covalent bond based on reversible photo[4 + 4]cycloaddition of anthracene for construction of double-dynamic polymers. Org Lett, 2013, 15: 6148–6151

    Article  CAS  Google Scholar 

  18. Wang K, Wang CY, Wang Y, Li H, Bao CY, Liu JY, Zhang SXA, Yang YW. Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor. Chem Commun, 2013, 49: 10528–10530

    Article  CAS  Google Scholar 

  19. Aoki T, Ogoshi T, Yamagishi T. Chemically responsive supramolecular structural change of pillar[5]arene nanotubes. Chem Lett, 2011, 40: 795–797

    Article  CAS  Google Scholar 

  20. Jie K, Yao Y, Chi X, Huang F. A CO2-responsive pillar[5]arene: synthesis and self-assembly in water. Chem Commun, 2014, 50: 5503–5505

    Article  CAS  Google Scholar 

  21. Zhang H, Nguyen KT, Ma X, Yan H, Guo J, Zhu L, Zhao Y. Host-guest complexation driven dynamic supramolecular self-assembly. Org Biomol Chem, 2013, 11: 2070–2074

    Article  CAS  Google Scholar 

  22. Kou Y, Cao D, Tao H, Wang L, Liang J, Chen Z, Meier H. Synthesis and inclusion properties of pillar[n]arenes. J Incl Phenom Macrocycl Chem, 2013, 77: 279–289

    Article  CAS  Google Scholar 

  23. Ogoshi T, Yamagishi T. Pillararenes: versatile synthetic receptors for supramolecular chemistry. Eur J Org Chem, 2013: 2961–2975

    Google Scholar 

  24. Zhang H, Zhao Y. Pillararene-based assemblies: design principle, preparation and applications. Chem Eur J, 2013, 19: 16862–16879

    Article  CAS  Google Scholar 

  25. Si W, Chen L, Hu XB, Tang G, Chen Z, Hou JL, Li ZT. Selective artificial transmembrane channels for protons by formation of water wires. Angew Chem Int Ed, 2011, 50: 12564–12568

    Article  CAS  Google Scholar 

  26. Hu XB, Chen Z, Tang G, Hou JL, Li ZT. Single-molecular artificial transmembrane water channels. J Am Chem Soc, 2012, 134: 8384–8387

    Article  CAS  Google Scholar 

  27. Chen L, Si W, Zhang L, Tang G, Li ZT, Hou JL. Chiral selective transmembrane transport of amino acids through artificial channels. J Am Chem Soc, 2013, 135: 2152–2155

    Article  CAS  Google Scholar 

  28. Si W, Li ZT, Hou JL. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew Chem Int Ed, 2014, 53: 4578–4581

    Article  CAS  Google Scholar 

  29. Sun YL, Yang YW, Chen DX, Wang G, Zhou Y, Wang CY, Stoddart JF. Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release. Small, 2013, 9: 3224–3229

    CAS  Google Scholar 

  30. Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc, 2013, 135: 10542–10549

    Article  CAS  Google Scholar 

  31. Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. A water-soluble pillar[6]arene: synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc, 2012, 134: 13248–13251

    Article  CAS  Google Scholar 

  32. Yang J, Yu G, Xia D, Huang F. A pillar[6]arene-based UV-responsive supra-amphiphile: synthesis, self-assembly, and application in dispersion of multiwalled carbon nanotubes in water. Chem Commum, 2014, 50: 3993–3995

    Article  CAS  Google Scholar 

  33. Zhou J, Chen M, Xie J, Diao G. Synergistically enhanced electrochemical response of host-guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles. ACS Appl Mater Inter, 2013, 5: 11218–11224

    Article  CAS  Google Scholar 

  34. Tian M, Chen DX, Sun YL, Yang YW, Jia Q. Pillararene-functionalized Fe3O4 nanoparticles as magnetic solid-phase extraction adsorbent for pesticide residue analysis in beverage samples. RSC Adv, 2013, 3: 22111–22119

    Article  CAS  Google Scholar 

  35. Wu L, Fang Y, Jia Y, Yang Y, Liao J, Liu N, Yang X, Feng W, Ming J, Yuan L. Pillar[5]arene-based diglycolamides for highly efficient separation of americium(III) and europium(III). Dalton Trans, 2014, 43: 3835–3838

    Article  CAS  Google Scholar 

  36. Fang Y, Wu L, Liao J, Chen L, Yang Y, Liu N, He L, Zou S, Feng W, Yuan L. Pillar[5]arene-based phosphine oxides: novel ionophores for solvent extraction separation of f-block elements from acidic media. RSC Adv, 2013, 3: 12376–12383

    Article  CAS  Google Scholar 

  37. Yao Y, Xue M, Chen J, Zhang M, Huang F. An amphiphilic pillar[5]arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J Am Chem Soc, 2012, 134: 15712–15715

    Article  CAS  Google Scholar 

  38. Zhang Z, Zhao Q, Yuan J, Antoniettib M, Huang F. A hybrid porous material from a pillar[5]arene and a poly(ionic liquid): selective adsorption of n-alkylene diols. Chem Commun, 2014, 50: 2595–2597

    Article  CAS  Google Scholar 

  39. Zhou SY, Song N, Liu SX, Chen DX, Jia Q, Yang YW. Separation and preconcentration of gold and palladium ions with a carboxylated pillar[5]arene derived sorbent prior to their determination by flow injection FAAS. Microchim Acta, 2014, doi: 10.1007/s00604-014-1229-2

    Google Scholar 

  40. Nierengarten I, Guerra S, Holler M, Nierengarten JF, Deschenaux R. Building liquid crystals from the 5-fold symmetrical pillar[5]arene core. Chem Commun, 2012, 48: 8072–8074

    Article  CAS  Google Scholar 

  41. Nierengarten I, Guerra S, Holler M, Karmazin-Brelot L, Barberá J, Deschenaux R, Nierengarten JF. Macrocyclic effects in the meso morphic properties of liquid-crystalline pillar[5]- and pillar[6]arenes. Eur J Org Chem, 2013: 3675–3684

    Google Scholar 

  42. Strutt NL, FJ D, Iehl J, Lalonde MB, Snurr RQ, Farha OK, Hupp JT, Stoddart JF. Incorporation of an A1/A2-difunctionalized pillar[5] arene into a metal-organic framework. J Am Chem Soc, 2012, 134: 17436–17439

    Article  CAS  Google Scholar 

  43. Strutt NL, Zhanga H, Stoddart JF. Enantiopure pillar[5]arene active domains within a homochiral metal-organic framework. Chem Commun, 2014, 50: 7455–7458

    Article  CAS  Google Scholar 

  44. Strutt NL, Forgan RS, Spruell JM, Botros YY, Stoddart JF. Monofunctionalized pillar[5]arene as a host for alkanediamines. J Am Chem Soc, 2011, 133: 5668–5671

    Article  CAS  Google Scholar 

  45. Sun S, Hu XY, Chen D, Shi J, Dong Y, Lin C, Pan Y, Wang L. Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polym Chem, 2013, 4: 2224–2229

    Article  CAS  Google Scholar 

  46. Sun S, Shi JB, Dong YP, Lin C, Hu XY, Wang LY. A pillar[5] arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions. Chin Chem Lett, 2013, 24: 987–992

    Article  CAS  Google Scholar 

  47. Wang P, Yan X, Huang F. Host-guest complexation induced emission: a pillar[6]arene-based complex with intense fluorescence in dilute solution. Chem Commun, 2014, 50: 5017–5019

    Article  CAS  Google Scholar 

  48. Yao Y, Chi X, Zhou Y, Huang F. A bola-type supra-amphiphile constructed from a water-soluble pillar[5]arene and a rod-coil molecule for dual fluorescent sensing. Chem Sci, 2014, 5: 2778–2782

    Article  CAS  Google Scholar 

  49. Adiri T, Marciano D, Cohen Y. Potential 129Xe-NMR biosensors based on secondary and tertiary complexes of a water-soluble pillar[5]arene derivative. Chem Commun, 2013, 49: 7082–7084

    Article  CAS  Google Scholar 

  50. Kothur RR, Hall J, Patel BA, Leong CL, Boutellec MG, Cragg PJ. A low pH sensor from an esterified pillar[5]arene. Chem Commum, 2014, 50: 852–854

    Article  CAS  Google Scholar 

  51. Yao Y, Xue M, Chi X, Ma Y, He J, Ablizb Z, Huang F. A new watersoluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles. Chem Commun, 2012, 48: 6505–6507

    Article  CAS  Google Scholar 

  52. Li H, Chen DX, Sun YL, Zheng YB, Tan LL, Weiss PS, Yang YW. Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J Am Chem Soc, 2013, 135: 1570–1576

    Article  CAS  Google Scholar 

  53. Yao Y, Jie K, Zhou Y, Xue M. Reversible assembly of silver nanoparticles driven by host-guest interactions based on water-soluble pillar[n]arenes. Chem Commun, 2014, 50: 5072–5074

    Article  CAS  Google Scholar 

  54. Yao Y, Zhou Y, Dai J, Yue S, Xue M. Host-guest recognitioninduced color change of water-soluble pillar[5]arene modified silver nanoparticles for visual detection of spermine analogues. Chem Commun, 2014, 50: 869–871

    Article  CAS  Google Scholar 

  55. Chen DX, Sun YL, Zhang Y, Cui JY, Shen FZ, Yang YW. Supramolecular self-assembly and photophysical properties of pillar[5] arene-stabilized CdTe quantum dots mediated by viologens. RSC Adv, 2013, 3: 5765–5768

    Article  CAS  Google Scholar 

  56. Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc, 2013, 135: 10310–10313

    Article  CAS  Google Scholar 

  57. Yao Y, Wei P, Yue S, Li J, Xue M. Amphiphilic pillar[5]arenes: influence of chemical structure on self-assembly morphology and application in gas response and l-DNA condensation. RSC Adv, 2014, 4: 6042–6047

    Article  CAS  Google Scholar 

  58. Nierengarten I, Buffet K, Holler M, Vincent SP, Nierengarten JF. A mannosylated pillar[5]arene derivative: chiral information transfer and antiadhesive properties against uropathogenic bacteria. Tetrahedron Lett, 2013, 54: 2398–2402

    Article  CAS  Google Scholar 

  59. Nierengarten I, Nothisen M, Sigwalt D, Biellmann T, Holler M, Remy JS, Nierengarten JF. Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications. Chem Eur J, 2013, 19: 17552–17558

    Article  CAS  Google Scholar 

  60. Zheng DD, Fu DY, Wu Y, Sun YL, Tan LL, Zhou T, Ma SQ, Zha X, Yang YW. Efficient inhibition of human papillomavirus 16 L1 pentamer formation by a carboxylatopillarene and a p-sulfonatocalixarene. Chem Commun, 2014, 50: 3201–3203

    Article  CAS  Google Scholar 

  61. Zhang H, Ma X, Nguyen KT, Zhao Y. Biocompatible pillararene-assembly-based carriers for dual bioimaging. ACS Nano, 2013, 7: 7853–7863

    Article  CAS  Google Scholar 

  62. Zhang H, Ma X, Nguyen KT, Zeng Y, Tai S, Zhao Y. Water-soluble pillararene-functionalized graphene oxide for in vitro raman and fluorescence dual-mode imaging. ChemPlusChem, 2014, 79: 462–469

    Article  CAS  Google Scholar 

  63. Zhou T, Yu H, Liu M, Yang YW. Carboxylatopillarene-modified reduced graphene oxides with high water dispersibility for fluorescent dye sensing. Chin J Chem, 2014, doi: 10.1002/cjoc.201400238

    Google Scholar 

  64. Ogoshi T, Ueshima N, Yamagishi T. An amphiphilic pillar[5]arene as efficient and substrate-selective phase-transfer catalyst. Org Lett, 2013, 15: 3742–3745

    Article  CAS  Google Scholar 

  65. Zhou Y, Yao Y, Xue M. Well-defined nano-sunflowers formed by self-assembly of a rod-coil amphiphile in water and their morphology transformation based on a water-soluble pillar[5]arene. Chem Commun, 2014, 50: 8040–8042

    Article  CAS  Google Scholar 

  66. Wang P, Yao Y, Xue M. A novel fluorescent probe for detecting paraquat and cyanide in water based on pillar[5]arene/10-methylacridinium iodide molecular recognition. Chem Commun, 2014, 50: 5064–5067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Yang, YW. Applications of pillarenes, an emerging class of synthetic macrocycles. Sci. China Chem. 57, 1185–1198 (2014). https://doi.org/10.1007/s11426-014-5190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5190-z

Keywords

Navigation