Skip to main content
Log in

Ab initio simulation of the sum-frequency generation response of optically active liquids in the presence of a dc electric field—determination of the absolute molecular configuration

  • Articles
  • Special Issue Quantum Chemistry for Extended Systems—In honor of Prof. J.M. André for his 70th birthday
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical computations have been performed to evaluate the first and second hyperpolarizability quantities of the interference term, linear in the external static electric field, that appear in the electric field-induced sum-frequency generation signal of chiral liquids. These are performed at the time-dependent Hartree-Fock level on the prototypical 1,1′-bi-2-naphtol chiral species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giordmaine JA. Nonlinear optical properties of liquids. Phys Rev, 1965, 138: A1559–A1606

    Google Scholar 

  2. Fischer P, Buckingham AD, Albrecht AC. Isotropic second-order nonlinear optical susceptibilities. Phys Rev A, 2001, 64: 053816

    Article  Google Scholar 

  3. Fischer P, Wiersma DS, Righini R, Champagne B, Buckingham AD. Three-wave mixing in chiral liquids. Phys Rev Lett, 2000, 85: 4253

    Article  CAS  Google Scholar 

  4. Champagne B, Fischer P, Buckingham AD. Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules. Chem Phys Lett, 2000, 331: 83–88

    Article  CAS  Google Scholar 

  5. Belkin MA, Han SH, Wei X, Shen YR. Sum-frequency generation in chiral liquids near electronic resonance. Phys Rev Lett, 2001, 87: 113001

    Article  CAS  Google Scholar 

  6. Fischer P, Beckwitt K, Wise FW, Albrecht AC. The chiral specificity of sum-frequency generation in solutions. Chem Phys Lett, 2002, 352: 463–468

    Article  CAS  Google Scholar 

  7. Fischer P, Wise FW, Albrecht AC. Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol. J Phys Chem, 2003, A107: 8232–8238

    Article  Google Scholar 

  8. Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR. Sumfrequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys Rev Lett, 2000, 85: 4474

    Article  CAS  Google Scholar 

  9. Belkin MA, Shen YR. Doubly resonant IR-UV sum-frequency vibrational spectroscopy on molecular chirality. Phys Rev Lett, 2003, 91: 213907

    Article  CAS  Google Scholar 

  10. Zheng RH, Chen DM, Wei WM, He TJ, Liu FC. Theoretical investigation of doubly resonant IR-UV sum-frequency vibrational spectroscopy of binaphthol chiral solution. J Phys Chem, 2006, B110: 4480–4486

    Article  Google Scholar 

  11. Botek E, Champagne B, Turki M, André JM. Theoretical study of the second-order nonlinear optical properties of [N]helicenes and [N]phenylenes. J Chem Phys, 2004, 120: 2042–2048

    Article  CAS  Google Scholar 

  12. Champagne B, André JM, Botek E, Licandro E, Maiorana S, Bossi A, Clays K, Persoons A. Theoretical design of substituted tetrathia-[7]-helicenes with large second-order nonlinear optical responses. ChemPhysChem, 2004, 5: 1438–1442

    Article  CAS  Google Scholar 

  13. Botek E, Spassova M, Champagne B, Asselberghs I, Persoons A, Clays K. Hyper-rayleigh scattering of neutral and charged helicenes. Chem Phys Lett, 2005, 412: 274–279

    Article  CAS  Google Scholar 

  14. Botek E, Spassova M, Champagne B, Asselberghs I, Persoons A, Clays K. Erratum to “hyper-rayleigh scattering of neutral and charged helicenes”. Chem Phys Lett, 2006, 417: 282

    Article  CAS  Google Scholar 

  15. Fischer P, Champagne B. Electric-dipolar pseudoscalars in nonlinear optics. In: Papadopoulos MG, Leszczynski J, Sadlej AJ, Eds. Nonlinear Optical Properties of Atoms, Molecules, and Bulk Materials. Dordrecht: Kluwer, 2006

    Google Scholar 

  16. Buckingham AD, Fischer P. In: Hicks JM, Ed. Physical Chemistry of Chirality. Oxford: Oxford University Press, 2002

  17. Fischer P, Hache F. Nonlinear optical spectroscopy of chiral molecules. Chirality, 2005, 17: 421–437

    Article  CAS  Google Scholar 

  18. Fischer P, Buckingham AD, Beckwitt K, Wiersma DS, Wise FW. New electro-optic effect: sum-frequency generation from optically active liquids in the presence of a dc electric field. Phys Rev Lett, 2003, 91: 173901

    Article  CAS  Google Scholar 

  19. Fischer P, Salam A. Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field. Mol Phys, 2010, 108: 1857–1868

    Article  CAS  Google Scholar 

  20. Sekino H, Bartlett RJ. Frequency dependent nonlinear optical properties of molecules. J Chem Phys, 1986, 85: 976–989

    Article  CAS  Google Scholar 

  21. Karna SP, Dupuis M. Frequency dependent nonlinear optical properties of molecules: formulation and implementation in the HONDO program. J Comput Chem, 1991, 12: 487–504

    Article  CAS  Google Scholar 

  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jansen JH, Koseki S, Matsunaga M, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. J Comput Chem, 1993, 14: 1347–1363

    Article  CAS  Google Scholar 

  23. Silverman JL, van Leuven JL. Perturbational-variational approach to the calculation of variational wave functions. I. Theory. Phys Rev, 1967, 162: 1175

    Article  CAS  Google Scholar 

  24. Nee TS, Parr RJ, Bartlett RJ. Direct determination of the rotational barrier in ethane using perturbation theory. J Chem Phys, 1976, 64: 2216–2225

    Article  CAS  Google Scholar 

  25. Quinet O, Champagne B. Sum-frequency generation first hyperpolarizability from time-dependent Hartree-Fock method. Int J Quantum Chem, 2001, 85: 463–468

    Article  CAS  Google Scholar 

  26. Pulay P. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys Lett, 1980, 73: 393–398

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.1. Wallingford, CT: Gaussian, Inc., 2009

    Google Scholar 

  28. Bishop DM, De Kee DW. The frequency dependence of nonlinear optical processes. J Chem Phys, 1996, 104: 9876–9887

    Article  CAS  Google Scholar 

  29. Bishop DM, De Kee DW. The frequency dependence of hyperpolarizabilities for noncentrosymmetric molecules. J Chem Phys, 1996, 105: 8247–8249

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev, 2005, 105: 2999–3094

    Article  CAS  Google Scholar 

  31. Toro C, De Boni L, Li N, Santoro F, Rizzo A, Hernandez FE. Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy. Chem Eur J, 2010, 16: 3504–3509

    Article  CAS  Google Scholar 

  32. Rizzo A, Ågren H. Ab initio study of the circular intensity difference in electric-field-induced second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys, 2013, 15: 1198–1207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Champagne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champagne, B., Quinet, O. Ab initio simulation of the sum-frequency generation response of optically active liquids in the presence of a dc electric field—determination of the absolute molecular configuration. Sci. China Chem. 57, 1405–1408 (2014). https://doi.org/10.1007/s11426-014-5186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5186-8

Keywords

Navigation