Skip to main content
Log in

RRS-PBC: a molecular approach for periodic systems

  • Articles
  • Special Issue Quantum Chemistry for Extended Systems—In honor of Prof. J.M. André for his 70th birthday
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Technically, when dealing with a perfect crystal, methods in k-(reciprocal) space that impose periodic boundary conditions (PBC) in conjunction with plane-wave basis sets are widely used. Chemists, however, tend to think of a solid as a giant molecule, which offers a molecular way to describe a solid by using a finite cluster model (FCM). However, FCM may fail to simulate a perfect crystal due to its inevitable boundary effects. We propose an RRS-PBC method that extracts the k-space information of a perfect crystalline solid out of a reduced real space (RRS) of an FCM. We show that the inevitable boundary effects in an FCM are eliminated naturally to achieve converged high-quality band structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  2. Dovesi R, Orlando R, Roetti C. Pisani C, Saunders VR. The periodic Hartree-Fock method and its implementation in the crystal code. Phys Stat Sol, 2000, 217: 63–88

    Article  CAS  Google Scholar 

  3. Soler J, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J Phys C: Solid State Phys, 2002, 14: 2745–2779

    CAS  Google Scholar 

  4. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys, 2000, 113: 7756–7764

    Article  CAS  Google Scholar 

  5. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys C: Solid State Phys, 2002, 14: 2717–2744

    CAS  Google Scholar 

  6. Kudin KN, Scuseria GE. Linear-scaling density-functional theory with gaussian orbitals and periodic boundary conditions: efficient evaluation of energy and forces via the fast multipole method. Phys Rev B, 2000, 61: 16440–16453

    Article  CAS  Google Scholar 

  7. Hirata S. Quantum chemistry of macromolecules and solids. Phys Chem Chem Phys, 2009, 11: 8397–8412

    Article  CAS  Google Scholar 

  8. Jug K, Bredow T. Models for the treatment of crystalline solids and surfaces. J Comput Chem, 2004, 25: 1551–1567

    Article  CAS  Google Scholar 

  9. Derosa PA. A combined semiempirical-DFT study of oligomers within the finite-chain approximation, evolution from oligomers to polymers. J Comput Chem, 2009, 30: 1220–1228

    Article  CAS  Google Scholar 

  10. Cui CX, Kertesz M, Jiang Y. Extraction of polymer properties from oligomer calculations. J Phys Chem, 1990, 94: 5172–5179

    Article  CAS  Google Scholar 

  11. Xu X, Wang NQ, Zhang QE. Chemisorption on metal surfaces: cluster model studies. Bull Chem Soc Jpn, 1996, 69: 529–534

    Article  CAS  Google Scholar 

  12. Xu X, Nakatsuji H, Lu X, Ehara M, Cai Y, Wang NQ, Zhang QE. Cluster modeling of metal oxides: case study of MgO and the CO/MgO adsorption system. Theor Chem Acc, 1999, 102: 170–179

    Article  CAS  Google Scholar 

  13. Pomogaeva A, Kirtman B, Gu FL, Aoki Y. Band structure built from oligomer calculations. J Chem Phys, 2008, 128: 074109

    Article  Google Scholar 

  14. Hod O, Peralta JE, Scuseria GE. Edge effects in finite elongated graphene nanoribbons. Phys Rev B, 2007, 76: 233401

    Article  Google Scholar 

  15. Kan EJ, Li ZY, Yang JL, Hou JG. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl Phys Lett, 2007, 91: 243116

    Article  Google Scholar 

  16. Rudberg E, Salek P. Luo Y. Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett, 2007, 7: 2211–2213

    Article  CAS  Google Scholar 

  17. Yang WT. Direct calculation of electron density in density-functional theory. Phys Rev Lett, 1991, 66: 1438–1441

    Article  CAS  Google Scholar 

  18. Jiang J, Lu W, Luo Y. Electronic structures and transportation properties of Sub-60 nm long single-walled carbon nanotubes. Chem Phys Lett, 2005, 416: 272–276

    Article  CAS  Google Scholar 

  19. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev, 2006, 106: 1105–1136

    Article  CAS  Google Scholar 

  20. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes: the route toward applications. Science, 2002, 297: 787–792

    Article  CAS  Google Scholar 

  21. van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42: 980–999

    Article  Google Scholar 

  22. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  25. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  26. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys, 1999, 110: 6158–6170

    Article  CAS  Google Scholar 

  27. Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys, 1971, 54: 724–728

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Jr., Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Revision D.01. Wallingford CT: Gaussian, Inc., 2004

    Google Scholar 

  29. Heyd J, Scuseria GE. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened coulomb hybrid functional. J Chem Phys, 2004, 121: 1187–1191

    Article  CAS  Google Scholar 

  30. Yang SJ, Kertesz M. Bond length alternation and energy band gap of polyyne. J Phys Chem A, 2006, 110: 9771–9774

    Article  CAS  Google Scholar 

  31. Kudin KN, Scuseria GE, Martin RL. Hybrid density-functional theory and the insulating gap of UO2. Phys Rev Lett, 2002, 89: 266402

    Article  Google Scholar 

  32. Zamoshchik N, Bendikov M. Doped conductive polymers: modeling of polythiophene with explicitly used counterions. Adv Func Mater, 2008, 18: 3377–3385

    Article  CAS  Google Scholar 

  33. Marsman M, Paier J, Stroppa A, Kresse G. Hybrid functionals applied to extended systems. J Phys C: Solid State Phys, 2008, 20: 064201

    CAS  Google Scholar 

  34. Jacquemin D, Champagne B. Optimizing the geometry of stereoregular polymers. III. Polyyne and the basis set quasi-linear dependence. Int J Quantum Chem, 2000, 80: 863–870

    Article  CAS  Google Scholar 

  35. Eiser S, Slepkov AD, Elliott E, Luu T, McDonald R, Hegmann FA, Tykwinski RR. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc, 2005, 127: 2666–2676

    Article  Google Scholar 

  36. Karpfen A. Ab initio studies on polymers. I. The linear infinite polyyne. J Phys C: Solid State Phys, 1979, 12: 3227–3237

    Article  CAS  Google Scholar 

  37. Häberlen OD, Chung SC, Stener M, Rsch N. From clusters to bulk: a relativistic density functional investigation on a series of gold clusters Aun, n = 6,…, 147. J Phys Chem, 1997, 106: 5189–5201

    Article  Google Scholar 

  38. Roldán A, Vińes F, Illas F. Density functional studies of coinage metal nanoparticles: scalability of their properties to bulk. Theor Chem Acc, 2008, 120: 565–573

    Article  Google Scholar 

  39. Wu A, Xu X. DCMB that combines divide-and-conquer and mixed-basis set methods for accurate geometry optimizations, total energies, and vibrational frequencies of large molecules. J Comput Chem, 2012, 33: 1421–1432

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Xu or Yi Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, I.Y., Jiang, J., Gao, B. et al. RRS-PBC: a molecular approach for periodic systems. Sci. China Chem. 57, 1399–1404 (2014). https://doi.org/10.1007/s11426-014-5183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5183-y

Keywords

Navigation