Skip to main content
Log in

Photosensitive damage of lysozyme caused by pazufloxacin and the protective effect of ferulic acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Laser flash photolysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments were carried out to study the photosensitive damage induced by pazufloxacin (PAX) and the protection of lysozyme (Lyso) by ferulic acid (FCA), an active antioxidant. Transient absorption spectra revealed electron transfer from Lyso and FCA to 3PAX*, with respective bimolecular reaction rate constants of 6.3×107 and 1.4×1010 dm3/(mol s). A pulse radiolysis study was also performed to investigate the formation of Lyso radical cations. Results showed that FCA effectively inhibits the cross-linking of protein induced by fluoroquinolones. Finally, a mechanism of the protective effect of FCA on Lyso was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albini A, Monti S. Photophysics and photochemistry of fluoroquinolones. Chem Soc Rev, 2003, 32: 238–250

    Article  CAS  Google Scholar 

  2. Barry AL, Fuchs PC. Antistaphylococcal activity of the fluoroquinolones Ci-960, Pd-131628, sparfloxacin, ofloxacin and ciprofloxacin. Eur J Clin Microbiol, 1991, 10: 168–171

    Article  CAS  Google Scholar 

  3. Chu DTW, Fernandes PB. Structure-activity-relationships of the fluoroquinolones. Antimicrob Agents Ch, 1989, 33: 131–135

    Article  CAS  Google Scholar 

  4. Domagala JM, Hanna LD, Heifetz CL, Hutt MP, Mich TF, Sanchez JP, Solomon M. New structure-activity-relationships of the quinolone antibacterials using the target enzyme: the development and application of a DNA gyrase assay. J Med Chem, 1986, 29: 394–404

    Article  CAS  Google Scholar 

  5. Zhao B, Chignell CF, Rammal M, Smith F, Hamilton MG, Andley UP, Roberts JE. Detection and prevention of ocular phototoxicity of ciprofloxacin and other fluoroquinolone antibiotics dagger. Photochem Photobiol, 2010, 86: 798–805

    Article  CAS  Google Scholar 

  6. Tolland J, Davies J, Elborn S, McKenna KE. Ciprofloxacin-induced phototoxicity: in vivo and in vivo data. Brit J Dermatol, 2008, 159: 129–130

    Google Scholar 

  7. Lipsky BA, Baker CA. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin Infect Dis, 1999, 28: 352–364

    Article  CAS  Google Scholar 

  8. Stahlmann R, Lode H. Toxicity of quinolones. Drugs, 1999, 58: 37–42

    Article  CAS  Google Scholar 

  9. Condorelli G, De Guidi G, Giuffrida S, Sortino S, Chillemi R, Sciuto S. Molecular mechanisms of photosensitization induced by drugs XII. Photochemistry and photosensitization of rufloxacin: an unusual photodegradation path for the antibacterials containing a fluoroquinolone-like chromophore. Photochem Photobiol, 1999, 70: 280–286

    Article  CAS  Google Scholar 

  10. Zhang P, Yao SD, Li HX, Song XY, Liu YC, Wang WF. Pulse radiolysis study on several fluoroquinolones. Radiat Phys Chem, 2011, 80: 548–553

    Article  CAS  Google Scholar 

  11. Liu YC, Li HX, Cui RR, Tang RZ, Xu YL, Wang WF. Pulse radiolysis of sparfloxacin in neutral aqueous solution. Nucl Sci Tech, 2013, 24: S010311

    Google Scholar 

  12. Xu YL, Liu YC, Li HX, Zhang P, Tang RZ, Cao XY, Wang WF. Pulse radiolysis and laser flash photolysis study of balofloxacin. Nucl Sci Tech, 2013, 24: S010312

    Google Scholar 

  13. Li HX, Zhang P, Liu YC, Tang RZ, Xing ZG, Yao SD, Fu HY, Wang WF. Photophysical properties of gatifloxacin in aqueous solution by laser flash photolysis and pulse radiolysis. Radiat Phys Chem, 2012, 81: 40–45

    Article  CAS  Google Scholar 

  14. Ferguson J, Dawe R. Phototoxicity in quinolones: comparison of ciprofloxacin and grepafloxacin. J Antimicrob Chemoth, 1997, 40: 93–98

    Article  CAS  Google Scholar 

  15. Man I, Traynor NJ, Ferguson J. Recent developments in fluoroquinolone phototoxicity. Photodermatol Photo, 1999, 15: 32–33

    Article  CAS  Google Scholar 

  16. Gurbay A, Gonthier B, Signorini-Allibe N, Barret L, Favier A, Hincal F. Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by vitamin E. Neurotoxicology, 2006, 27: 6–10

    Article  Google Scholar 

  17. Lhiaubet-Vallet V, Bosca F, Miranda MA. Photosensitized DNA damage: the case of fluoroquinolones. Photochem Photobiol, 2009, 85: 861–868

    Article  CAS  Google Scholar 

  18. Dall’Acqua F, Viola G, Vedaldi D, Aloisi GG, Elisei F, Latterini L, Passeri R. Photoinduced modifications by fluoroquinolone drugs in bovine serum albumin (BSA) and ribonuclease A (RNAse) as model proteins. Arkivoc, 2007: 231–244

    Google Scholar 

  19. Liu L, L KX, Li Y, Feng YF, Yin Q, Sun CH. HPLC studies on determination of pazufloxacin in human plasma. Chin J Pharm Anal, 2004, 24: 529–531

    Google Scholar 

  20. Zhang ZL, Li JJ, Qu LB, Yang R. determination of pazufloxacin mesylas by capillary electrophoresis with electrochemiluminescence detection. Chinese J Anal Chem, 2008, 36: 941–946

    Article  CAS  Google Scholar 

  21. Yang XY, You XP. Pharmacological research and clinical study of pazufloxacin mesilate silate. World Motes Abtibiot, 2003: 24–80

    Google Scholar 

  22. Rubinstein E. History of quinolones and their side effects. Chemotherapy, 2001, 47: 3–8

    Article  CAS  Google Scholar 

  23. Nomura N, Mitsuyama J, Furuta Y, Yamada H, Nakata M, Fukuda T, Yamada H, Takahata M, Minami S. In vitro and in vivo antibacterial activities of pazufloxacin mesilate, a new injectable quinolone. Jpn J Antibiot, 2002, 55: 412–439

    CAS  Google Scholar 

  24. Liu YC, Zhang P, Li HX, Tang RZ, Cui RR, Wang WF. Photochemical properties and phototoxicity of pazufloxacin: a stable and transient study. J Photochem Photobiol B, 2013, 118: 58–65

    Article  CAS  Google Scholar 

  25. Zhang ZX, Zhao HW, Zhu HP, Ge M, Wang WF, Yao SD, Li WX. SDS-PAGE study on photooxidation damage of lysozyme induced by riboflavin. Sci China Ser B, 2007, 50: 84–90

    Article  CAS  Google Scholar 

  26. Temple NJ. Antioxidants and disease: more questions than answers. Nutr Res, 2000, 20: 449–459

    Article  CAS  Google Scholar 

  27. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress inducedneurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40: 959–975

    Article  CAS  Google Scholar 

  28. Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structureactivity studies. J Nutr Biochem, 2002, 13: 273–281

    Article  CAS  Google Scholar 

  29. Twu YK, Shih IL, Yen YH, Ling YF, Shieh CJ. Optimization of lipase-catalyzed synthesis of octyl hydroxyphenylpropionate by response surface methodology. J Agr Food Chem, 2005, 53: 1012–1016

    Article  CAS  Google Scholar 

  30. Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, Paolino D, Bonina F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm, 2000, 199: 39–47

    Article  CAS  Google Scholar 

  31. Maurya DK, Salvi VP, Nair CKK. Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Mol Cell Biochem, 2005, 280: 209–217

    Article  CAS  Google Scholar 

  32. Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme: a 3-dimensional fourier synthesis at 2a resolution. Nature, 1965, 206: 757–61

    Article  CAS  Google Scholar 

  33. Yao SD, Sheng SG, Cai JH, Zhang JS, Lin NY. Nanosecond pulseradiolysis studies in China. Radiat Phys Chem, 1995, 46: 105–109

    Article  Google Scholar 

  34. Agrawal N, Ray RS, Farooq M, Pant AB, Hans RK. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation. Photochem Photobiol, 2007, 83: 1226–1236

    Article  CAS  Google Scholar 

  35. Carlucci G. Analysis of fluoroquinolones in biological fluids by high-performance liquid chromatography. J Chromatogr A, 1998, 812: 343–367

    Article  CAS  Google Scholar 

  36. Liu YC, Zhang P, Li HX, Wang WF. Ciprofloxacin photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate in neutral aqueous solution. Photochem Photobiol, 2012, 88: 639–644

    Article  CAS  Google Scholar 

  37. Li HX, Liu YC, Tang RZ, Zhang P, Fu HY, Yao SD, Wang WF. Pulse radiolysis study on gatifloxacin: a fluoroquinolone antibiotic. Sci China Chem, 2012, 55: 1358–1363

    Article  CAS  Google Scholar 

  38. Lu CY, Lin WZ, Wang WF, Han ZH, Yao SD, Lin NY. Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. Phys Chem Chem Phys, 2000, 2: 329–334

    Article  CAS  Google Scholar 

  39. Edwards AM, Silva E. Exposure of tryptophanyl residues in alphalactalbumin and lysozyme: quantitative-determination by fluorescence quenching studies. Radiat Environ Bioph, 1986, 25: 113–122

    Article  CAS  Google Scholar 

  40. Davies KJA. Protein damage and degradation by oxygen radicals. 1. General-aspects. J Biol Chem, 1987, 262: 9895–9901

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, Y., Li, H. et al. Photosensitive damage of lysozyme caused by pazufloxacin and the protective effect of ferulic acid. Sci. China Chem. 58, 508–513 (2015). https://doi.org/10.1007/s11426-014-5174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5174-z

Keywords

Navigation