Skip to main content
Log in

Influences of fluorination on homoleptic iridium complexes with C∧N=N type ligand to material properties, ligand orientation and OLED performances

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two new iridium complexes with C∧N=N type ligand (i.e., Ir(BFPPya)3{tris[3,6-bis(4-fluorophenyl)pyridazine]iridium(III)} and Ir(BDFPPya)3{tris[3,6-bis (2,4-di-fluorophenyl)pyridazine]iridium(III)}) attaching with fluorine atoms, were synthesized and the effects of fluorination on the material properties and device performance were investigated. Compared with our previously reported fluorine-free analogue material, that is Ir(BPPya)3{tris[3,6-bis(phenyl)pyridazine]iridium(III)}, blue shifts in the emission spectra as well as in the long wavelength region of the absorptions were observed. The photoluminescence quantum yield (PLQY) (0.44 and 0.84 vs 0.29), phosphoresces lifetime (0.88 and 1.31 vs 0.66 ms), and oxidation potential (1.10 and 1.37 vs 0.95 V) increased obviously after fluorinating the ligand. In contrast, the thermal stability of the iridium complexes decreased slightly (Td: 435 and 402 vs 440 °C). In the density functional theory (DFT) calculations, by comparing the steric shape of the three ligands within one optimized molecule, orientational differences among the complexes were observed. In OLED device studies, bluish green electroluminescence with peak emission of 500 nm, using the electron-transporting host of TPBI [2,2′,2″-(1,3,5-benzenetriyl)tris(1-phenyl- 1H-benzimidazole)] and the most fluorinated dopant of Ir(BDFPPya)3, was achieved with maximum efficiency of 20.3 cd/A. On one hand this efficiency is not satisfactory considering a high PLQY of 0.84. On the other hand with the similar device structure, that the (HOMO-LUMO)s of all the dopants are wrapped within that of the host TPBI, and all the triplet energies of the dopants are smaller than that of the host TPBI, it is abnormal that the ordering of device efficiencies is contradictory to that of PLQY. Assisting with the phosphorescent spectrum of TPBI and the absorption spectra of the dopant, the contradiction was interpreted reasonably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Cui LS, Xu MF, Shi XB, Zhou DY, Wang ZK, Jiang ZQ, Liao LS. Highly efficient single-layer organic light-emitting devices based on a bipolar pyrazine/carbazole hybrid host material. J Mater Chem C, 2014, 2: 2488–2495

    Article  CAS  Google Scholar 

  2. Minaev B, Baryshnikov G, Agren H. Principles of phosphorescent organic light emitting devices. Phys Chem Chem Phys, 2014, 16: 1719–1758

    Article  CAS  Google Scholar 

  3. Sato K, Shizu K, Yoshimura K, Kawada A, Miyazaki H, Adachi C. Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes. Phys Rev Lett, 2013, 110: 247401

    Article  Google Scholar 

  4. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492: 234–238

    Article  CAS  Google Scholar 

  5. Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J Am Chem Soc, 2012, 134: 14706–14709

    Article  CAS  Google Scholar 

  6. Lee CW, Lee JY. Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b] indole derivatives as host materials. Adv Mater, 2013, 25: 5450–5454

    Article  CAS  Google Scholar 

  7. Sasabe H, Nakanishi H, Watanabe Y, Yano S, Hirasawa M, Pu YJ, Kido J. Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv Funct Mater, 2013, 23: 5550–5555

    Article  CAS  Google Scholar 

  8. Du BS, Liao JL, Huang MH, Lin CH, Lin HW, Chi Y, Pan HA, Fan GL, Wong KT, Lee GH, Chou PT. Os(II) based green to red phosphors: a great prospect for solution-processed, highly efficient organic light-emitting diodes. Adv Funct Mater, 2012, 22: 3491–3499

    Article  CAS  Google Scholar 

  9. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395: 151–154

    Article  CAS  Google Scholar 

  10. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett, 1999, 75: 4–6

    Article  CAS  Google Scholar 

  11. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR. Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl Phys Lett, 2001, 79: 2082–2084

    Article  CAS  Google Scholar 

  12. Babudri F, Farinola GM, Naso F, Ragni R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem Commun, 2007, 10: 1003–1022

    Article  Google Scholar 

  13. Li X, Minaev B, Ågren H, Tian H. Theoretical study of phosphorescence of iridium complexes with fluorine-substituted phenylpyridine ligands. Eur J Inorg Chem, 2011, 2011: 2517–2524

    Article  Google Scholar 

  14. Lee CW, Lee JY. Benzo[4,5]thieno[2,3-b]pyridine derivatives as host materials for high efficiency green and blue phosphorescent organic light-emitting diodes. Chem Commun, 2013, 49: 1446–1448

    Article  CAS  Google Scholar 

  15. Yang CH, Mauro M, Polo F, Watanabe S, Muenster I, Fröhlich R, De Cola L. Deep-blue-emitting heteroleptic iridium(III) complexes suited for highly efficient phosphorescent OLEDs. Chem Mater, 2012, 24: 3684–3695

    Article  CAS  Google Scholar 

  16. Fan C, Li Y, Yang C, Wu H, Qin J, Cao Y. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic light-emitting diodes by solution process. Chem Mater, 2012, 24: 4581–4587

    Article  CAS  Google Scholar 

  17. Wang R, Deng L, Zhang T, Li J. Substituent effect on the photophysical properties, electrochemical properties and electroluminescence performance of orange-emitting iridium complexes. Dalton Trans, 2012, 41: 6833–6841

    Article  CAS  Google Scholar 

  18. Lee SJ, Park KM, Yang K, Kang Y. Blue phosphorescent Ir(III) complex with high color purity: fac-tris(2′,6′-difluoro-2,3′-bipyridi-nato-N,C4′)iridium(III). Inorg Chem, 2008, 48: 1030–1037

    Article  Google Scholar 

  19. Smith ARG, Riley MJ, Burn PL, Gentle IR, Lo SC, Powell BJ. Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory. Inorg Chem, 2012, 51: 2821–2831

    Article  CAS  Google Scholar 

  20. Gao ZQ, Mi BX, Tam HL, Cheah KW, Chen CH, Wong MS, Lee ST, Lee CS. High efficiency and small roll-off electrophosphorescence from a new iridium complex with well-matched energy levels. Adv Mater, 2008, 20: 774–778

    Article  CAS  Google Scholar 

  21. Mi BX, Wang PF, Gao ZQ, Lee CS, Lee ST, Hong HL, Chen XM, Wong MS, Xia PF, Cheah KW, Chen CH, Huang W. Strong luminescent iridium complexes with C∧N=N structure in ligands and their potential in efficient and thermally stable phosphorescent OLEDs. Adv Mater, 2009, 21: 339–343

    Article  CAS  Google Scholar 

  22. Li XN, Wu ZJ, Liu XJ, Zhang HJ. Origin of rare and highly efficient phosphorescent and electroluminescent iridium(III) complexes based on C N=N ligands, a theoretical explanation. J Phys Chem A, 2010, 114: 9300–9308

    Article  CAS  Google Scholar 

  23. Shi L, Su J, Wu Z. First-principles studies on the efficient photoluminescent iridium(III) complexes with C∧N=N ligands. Inorg Chem, 2011, 50: 5477–5484

    Article  CAS  Google Scholar 

  24. Tong B, Mei Q, Wang S, Fang Y, Meng Y, Wang B. Nearly 100% internal phosphorescence efficiency in a polymer light-emitting diode using a new iridium complex phosphor. J Mater Chem, 2008, 18: 1636–1639

    Article  CAS  Google Scholar 

  25. Singh R, Hay AS. Synthesis and physical properties of poly(aryl ether phthalazine)s. Macromolecules, 1992, 25: 1025–1032

    Article  CAS  Google Scholar 

  26. Nakayama J, Konishi T, Ishii A, Hoshino M. Preparation of 3,6-disubstituted pyridazines from 3-thiapentane-1,5-diones via 2,7-dihydro-1,4,5-thiadiazepines. Bull Chem Soc Jpn, 1989, 62: 2608–2612

    Article  CAS  Google Scholar 

  27. Lo SC, Harding RE, Shipley CP, Stevenson SG, Burn PL, Samuel IDW. High-triplet-energy dendrons: enhancing the luminescence of deep blue phosphorescent iridium(III) complexes. J Am Chem Soc, 2009, 131: 16681–16688

    Article  CAS  Google Scholar 

  28. King K, Spellane P, Watts RJ. Excited-state properties of a triply ortho-metalated iridium (III) complex. J Am Chem Soc, 1985, 107: 1431–1432

    Article  CAS  Google Scholar 

  29. Xia D, Wang B, Chen B, Wang S, Zhang B, Ding J, Wang L, Jing X, Wang F. Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes. Angew Chem Int Ed, 2014, 53: 1048–1052

    Article  CAS  Google Scholar 

  30. Kozhevnikov VN, Zheng Y, Clough M, Al-Attar HA, Griffiths GC, Abdullah K, Raisys S, Jankus V, Bryce MR, Monkman AP. Cyclometalated Ir(III) complexes for high-efficiency solution-processable blue PhOLEDs. Chem Mater, 2013, 25: 2352–2358

    Article  CAS  Google Scholar 

  31. Xu QL, Wang CC, Li TY, Teng MY, Zhang S, Jing YM, Yang X, Li WN, Lin C, Zheng YX, Zuo JL, You XZ. Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand. Inorg Chem, 2013, 52: 4916–4925

    Article  CAS  Google Scholar 

  32. Ho CL, Wong WY, Wang Q, Ma D, Wang L, Lin Z. A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element WOLED exploiting exciton-managed fluorescence/phosphorescence. Adv Funct Mater, 2008, 18: 928–937

    Article  CAS  Google Scholar 

  33. Chew S, Lee CS, Lee ST, Wang P, He J, Li W, Pan J, Zhang X, Kwong H. Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Appl Phys Lett, 2006, 88: 093510

    Article  Google Scholar 

  34. Namdas EB, Ruseckas A, Samuel IDW, Lo SC, Burn PL. Photophysics of fac-tris(2-phenylpyridine) iridium(III) cored electroluminescent dendrimers in solution and films. J Phys Chem B, 2004, 108: 1570–1577

    Article  CAS  Google Scholar 

  35. Andersson MR, Berggren M, Inganäs O, Gustafsson G, Gustafsson-Carlberg J, Selse D, Hjertberg T, Wennerström O. Electroluminescence from substituted poly (thiophenes): from blue to near-infrared. Macromolecules, 1995, 28: 7525–7529

    Article  CAS  Google Scholar 

  36. Agrawal AK, Jenekhe SA. Electrochemical properties and electronic structures of conjugated polyquinolines and polyanthrazolines. Chem Mater, 1996, 8: 579–589

    Article  CAS  Google Scholar 

  37. Lee S, Kim SO, Shin H, Yun HJ, Yang K, Kwon SK, Kim JJ, Kim YH. Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. J Am Chem Soc, 2013, 135: 14321–14328

    Article  CAS  Google Scholar 

  38. Kang Y, Chang YL, Lu JS, Ko SB, Rao Y, Varlan M, Lu ZH, Wang S. Highly efficient blue phosphorescent and electroluminescent Ir(III) compounds. J Mater Chem C, 2013, 1: 441–450

    Article  CAS  Google Scholar 

  39. Cao H, Shan G, Wen X, Sun H, Su Z, Zhong R, Xie W, Li P, Zhu D. An orange iridium(III) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes. J Mater Chem C, 2013, 1: 7371–7379

    Article  CAS  Google Scholar 

  40. Jou JH, Yang YM, Chen SZ, Tseng JR, Peng SH, Hsieh CY, Lin YX, Chin CL, Shyue JJ, Sun SS. High-efficiency wet-and dry-processed green organic light emitting diodes with a novel iridiumcomplex-based emitter. Adv Opt Mater, 2013, 1: 657–667

    Article  Google Scholar 

  41. Dawson WR, Windsor MW. Fluorescence yields of aromatic compounds. J Phys Chem, 1968, 72: 3251–3260

    Article  CAS  Google Scholar 

  42. Zheng Y, Batsanov AS, Edkins RM, Beeby A, Bryce MR. Thermally induced defluorination during a mer to fac transformation of a blue-green phosphorescent cyclometalated iridium(III) complex. Inorg Chem, 2011, 51: 290–297

    Article  Google Scholar 

  43. Baldo M, Thompson M, Forrest S. Phosphorescent materials for application to organic light omitting devices. Pure Appl Chem, 1999, 71: 2095–2106

    Article  CAS  Google Scholar 

  44. Ye J, Zheng CJ, Ou XM, Zhang XH, Fung MK, Lee CS. Management of singlet and triplet excitons in a single emission layer: a simple approach for a high-efficiency fluorescence/phosphorescence hybrid white organic light-emitting device. Adv Mater, 2012, 24: 3410–3414

    Article  CAS  Google Scholar 

  45. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459: 234–238

    Article  CAS  Google Scholar 

  46. Baldo MA, Adachi C, Forrest SR. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys Rev B, 2000, 62: 10967–10977

    Article  CAS  Google Scholar 

  47. Closs GL, Johnson MD, Miller JR, Piotrowiak P. A connection between intramolecular long-range electron, hole, and triplet energy transfers. J Am Chem Soc, 1989, 111: 3751–3753

    Article  CAS  Google Scholar 

  48. Closs GL, Miller JR. Intramolecular long-distance electron transfer in organic molecules. Science, 1988, 240: 440–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BaoXiu Mi or ZhiQiang Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Mao, L., Jia, H. et al. Influences of fluorination on homoleptic iridium complexes with C∧N=N type ligand to material properties, ligand orientation and OLED performances. Sci. China Chem. 58, 640–649 (2015). https://doi.org/10.1007/s11426-014-5172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5172-1

Keywords

Navigation