Skip to main content
Log in

Analyzing excited-state processes and optical signatures of a ratiomeric fluorine anion sensor: a quantum look

  • Articles
  • Special Issue Quantum Chemistry for Extended Systems—In honor of Prof. J.M. André for his 70th birthday
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recently, the spectroscopic signatures of a benzoselenadiazole derivative have been investigated in the framework of designing a new ratiometric fluoride sensor (Saravanan et al., Org Lett, 2014, 16: 354–357). It was suggested that this sensor is undergoing excited-state intramolecular proton transfer. In this work, we provide a new look at these experimental data, using a state-of-the-art time-dependent density functional theory approach to mimic the spectroscopic signatures. New insights about the nature of the excited-state processes are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett, 1984, 52: 997–1000

    Article  CAS  Google Scholar 

  2. Casida ME. In Time-dependent density-functional response theory for molecules. Chong DP, Eds. Recent advances in density functional methods. Singapore: World Scientific, 1995, Vol. 1: 155–192

  3. Laurent AD, Jacquemin D. TD-DFT benchmarks: a review. Int J Quantum Chem, 2013, 113: 2019–2039

    Article  CAS  Google Scholar 

  4. Furche F, Ahlrichs R. Adiabatic time-dependent density functional methods for excited states properties. J Chem Phys, 2002, 117: 7433–7447

    Article  CAS  Google Scholar 

  5. Laurent AD, Adamo C, Jacquemin D. Dye chemistry with Time-Dependent Density Functional Theory. Phys Chem Chem Phys, 2014, 16: 14334–14356

    Article  CAS  Google Scholar 

  6. Aquino AJA, Lischka H, Hattig C. Excited-state intramolecular proton transfer: a survey of TDDFT and RI-CC2 excited-state potential energy surfaces. J Phys Chem A, 2005, 109: 3201–3208

    Article  CAS  Google Scholar 

  7. Irgibaeva IS, Birilzhaniva DA, Barashkov NN. Research of electronic absorption spectra of benzazols derivatives by ab initio calculations. Int J Quantum Chem, 2008, 108: 2700–2710

    Article  CAS  Google Scholar 

  8. Aquino AJA, Plasser F, Barbatti M, Lischka H. Ultrafast excited state proton transfer processes: energy surfaces and on-the-fly dynamics simulations. Croat Chem Acta, 2009, 82: 105–114

    CAS  Google Scholar 

  9. Plasser F, Barbatti M, Aquino AJA, Lischka H. Excited-state diproton transfer in [2,2-bipyridyl]-3,3-diol: the mechanism is sequential, not concerted. J Phys Chem A, 2009, 113: 8490–8499

    Article  CAS  Google Scholar 

  10. Tsai HHG, Sun HLS, Tan CJ. TD-DFT study of the excited-state potential energy surfaces of 2-(2-hydroxyphenyl)benzimidazole and its amino derivatives. J Phys Chem A, 2010, 114: 4065–4079

    Article  CAS  Google Scholar 

  11. Randino C, Ziolek M, Gelabert R, Organero JA, Gil M, Moreno M, Lluch JM, Douhal A. Photo-deactivation pathways of a double H-bonded photochromic Schiff base investigated by combined theoretical calculations and experimental time-resolved studies. Phys Chem Chem Phys, 2011, 13: 14960–14972

    Article  CAS  Google Scholar 

  12. Cui G, Lan Z, Thiel W. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore. J Am Chem Soc, 2012, 134: 1662–1672

    Article  CAS  Google Scholar 

  13. Xie L, Chen Y, Wu W, Guo H, Zhao J, Yu X. Fluorescent coumarin derivatives with large stokes shift, dual emission and solid state luminescent properties: an experimental and theoretical study. Dyes Pigm, 2012, 92: 1361–1369

    Article  CAS  Google Scholar 

  14. Hayaki S, Kimura Y, Sato H. Ab initio study on an excited-state intramolecular proton-transfer reaction in ionic liquid. J Phys Chem B, 2013, 117: 6759–6767

    Article  CAS  Google Scholar 

  15. Moreno M, Ortiz-Sanchez JM, Gelabert R, Lluch JM. A theoretical study of the photochemistry of indigo in its neutral and dianionic (leucoindigo) forms. Phys Chem Chem Phys, 2013, 15: 20236–20246

    Article  CAS  Google Scholar 

  16. Sekikawa T, Schalk O, Wu G, Boguslavskiy AE, Stolow A. Initial processes of proton transfer in salicylideneaniline studied by time-resolved photoelectron spectroscopy. J Phys Chem A, 2013, 117: 2971–2979

    Article  CAS  Google Scholar 

  17. Phatangare KR, Gupta VD, Tathe AB, Padalkar VS, Patil VS, Ramasami P, Sekar N. ESIPT inspired fluorescent 2-(4-benzo[d]oxazol-2-yl)naphtho[1,2-d]oxazol-2-yl)phenol: experimental and DFT based approach to photophysical properties. Tetrahedron, 2013, 69: 1767–1777

    Article  CAS  Google Scholar 

  18. Roohi H, Hejazi F, Mohtamedifar N, Jahantab M. Excited state intramolecular proton transfer (ESIPT) in 2-(2′-hydroxyphenyl)benzoxazole and its naphthalene-fused analogues: a TD-DFT quantum chemical study. Spectro Chim Acta A, 2013, 118: 228–238

    Article  Google Scholar 

  19. Houari Y, Charaf-Eddin A, Laurent AD, Massue J, Ziessel R, Ulrich G, Jacquemin D. Modeling optical signatures and excited-state reactivities of substituted hydroxyphenylbenzoxazole (HBO) ESIPT dyes. Phys Chem Chem Phys, 2014, 16: 1319–1321

    Article  CAS  Google Scholar 

  20. Laurent AD, Houari Y, Carvalho PHPR, Neto BAD, Jacquemin D. ESIPT or not ESIPT ? Revisiting recent results on 2,1,3-benzothiadiazole under the TD-DFT light. RSC Adv, 2014, 4: 14189–14192

    Article  CAS  Google Scholar 

  21. Saravanan C, Easwaramoorthi S, Hsiow CY, Wang K, Hayashi M, Wang L. Benzoselenadiazole fluorescent probes-near-IR optical and ratiometric fluorescence sensor for fluoride ion. Org Lett, 2014, 16: 354–357

    Article  CAS  Google Scholar 

  22. Neto BAD, Carvalho PHPR, Santos DCBD, Gatto CC, Ramos LM, Vasconcelos NMd, Correa JR, Costa MB, de Oliveira HCB, Silva RG. Synthesis, properties and highly selective mitochondria staining with novel, stable and superior benzothiadiazole fluorescent probes. RSC Adv, 2012, 2: 1524–1532

    Article  CAS  Google Scholar 

  23. Gauden M, Pezzella A, Panzella L, Neves-Petersen MT, Skovsen E, Petersen SB, Mullen KM, Napolitano A, d’Ischia M, Sundström V. Role of solvent, pH, and molecular size in excited-state deactivation of key eumelanin building blocks: implications for melanin pigment photostability. J Am Chem Soc, 2008, 130: 17038–17043

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Wallingford CT: Gaussian Inc. 2009

    Google Scholar 

  25. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res, 2008, 41: 157–167

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  27. Isegawa M, Peverati R, Truhlar DG. Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and rydberg electronic transition energies. J Chem Phys, 2012, 137: 244104

    Article  Google Scholar 

  28. Jacquemin D, Planchat A, Adamo C, Mennucci B. A TD-DFT assessment of functionals for optical 0-0 transitions in solvated dyes. J Chem Theory Comput, 2012, 8: 2359–2372

    Article  CAS  Google Scholar 

  29. Leang SS, Zahariev F, Gordon MS. Benchmarking the performance of time-dependent density functional methods. J Chem Phys, 2012, 136: 104101

    Article  Google Scholar 

  30. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D. Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput, 2013, 9: 2749–2760

    Article  CAS  Google Scholar 

  31. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev, 2005, 105: 2999–3093

    Article  CAS  Google Scholar 

  32. Cammi R, Corni S, Mennucci B, Tomasi J. Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models. J Chem Phys, 2005, 122: 104513

    Article  CAS  Google Scholar 

  33. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Chem Phys, 2006, 124: 124520

    Article  Google Scholar 

  34. Le Bahers T, Adamo C, Ciofini I. A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput, 2011, 7: 2498–2506

    Article  Google Scholar 

  35. Jacquemin D, Le Bahers T, Adamo C, Ciofini I. What is the best atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys, 2012, 14: 5383–5388. Code available at Université de Nantes, http://www.sciences.univ-nantes.fr/CEISAM/erc/marches/ (accessed February 25, 2014)

    Article  CAS  Google Scholar 

  36. Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG. On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput, 2010, 6: 2071–2085

    Article  CAS  Google Scholar 

  37. Goerigk L, Grimme S. Assessment of TD-DFT methods and of various spin scaled CISnD and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. J Chem Phys, 2010, 132: 184103

    Article  Google Scholar 

  38. Ciofini I, Le Bahers T, Adamo C, Odobel F, Jacquemin D. Through-space charge transfer in rod-like molecules: lessons from theory. J Phys Chem C, 2012, 116: 11946–11955; Erratum: ibidem 14736–14736

    Article  CAS  Google Scholar 

  39. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multi-reference configuration interaction. J Chem Phys, 2008, 129: 104103

    Article  Google Scholar 

  40. Jacquemin D, Wathelet V, Perpète EA, Adamo C. Extensive TDDFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput, 2009, 5: 2420–2435

    Article  CAS  Google Scholar 

  41. Tao YM, Li HY, Xu QL, Zhu YC, Kang LC, Zheng YX, Zuo JL, You XZ. Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties. Synth Met, 2011, 161: 718–723

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adèle D. Laurent or Denis Jacquemin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, A.D., Jacquemin, D. Analyzing excited-state processes and optical signatures of a ratiomeric fluorine anion sensor: a quantum look. Sci. China Chem. 57, 1363–1368 (2014). https://doi.org/10.1007/s11426-014-5156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5156-1

Keywords

Navigation