Skip to main content
Log in

Citric acid-assisted synthesis of nano-Ag/BiOBr with enhanced photocatalytic activity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this study, silver nano-particles have been anchored in the surface of BiOBr photocatalysts by a citric acid-assisted photoreduction method. The citric acid was served as a chelating and reductive agent for the preparation of Ag-decorated BiOBr photocatalysts (named as Ag/BiOBr-2). The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis diffuse reflection spectroscopy (DRS). The Ag/BiOBr-2 photocatalyst exhibited excellent and stable photocatalytic activities on MO and phenol degradation under simulated sunlight irradiation. The enhanced photocatalytic activity could be ascribed to the smaller size, rough surface, and the surface plasma resonance (SPR) effect of Ag. Also, the Schottky junction, between the surface of the BiOBr and silver nanoparticles, accelerated the efficient transfer and separation of photoinduced electron-hole pairs and promoted the photocatalytic performance. The active species tests indicated that the superoxide radical (·O2 ) was responsible for the enhanced photocatalytic performance of Ag/BiOBr-2. Finally, a possible photocatalytic mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev, 2011, 112: 1555–1614

    Article  Google Scholar 

  2. Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev, 2010, 39: 4206–4219

    Article  CAS  Google Scholar 

  3. Xi G, Ye J, Ma Q, Su, N, Bai H, Wang C. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J Am Chem Soc, 2012, 134: 6508–6511

    Article  CAS  Google Scholar 

  4. Ingram DB, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc, 2011, 133: 5202–5205

    Article  CAS  Google Scholar 

  5. Priebe JB, Karnahl M, Junge H, Beller, M, Hollmann D, Brückner A. Water reduction with visible light: synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angew Chem Int Edit, 2013, 52: 11420–11424

    Article  CAS  Google Scholar 

  6. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res, 2004, 38: 3001–3008

    Article  CAS  Google Scholar 

  7. Lu W, Liu G, Gao S, Xing S, Wang J. Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology, 2008, 19: 445711

    Article  Google Scholar 

  8. Ida Y, Watase S, Shinagawa T, Watanabe M, Chigane M, Inaba M, Tasaka A, Izaki M. Direct electrodeposition of 1.46 eV bandgap silver (I) oxide semiconductor films by electrogenerated acid. Chem Mater, 2008, 20: 1254–1256

    Article  CAS  Google Scholar 

  9. Han Z, Ren L, Cui Z, Chen C, Pan H, Chen J. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl Catal B: Environ, 2012, 126: 298–305

    Article  CAS  Google Scholar 

  10. Lu L, Kong L, Jiang Z, Lai H, Xiao T, Edwards PP. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr. Catal Lett, 2012, 142: 771–778

    Article  CAS  Google Scholar 

  11. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photo-catalysis. Inorg Chem, 2007, 46: 6980–6986

    Article  CAS  Google Scholar 

  12. Zhang H, Fan X, Quan X, Chen S, Yu H. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environ Sci Technol, 2011, 45: 5731–5736

    Article  CAS  Google Scholar 

  13. Wen Y, Ding H, Shan Y. Preparation and visible light photocatalytic activity of Ag/TiO2/grapheme nanocomposite. Nanoscale, 2011, 3: 4411–4417

    Article  CAS  Google Scholar 

  14. Wang P, Fan C, Wang Y, Ding G, Yuan P. A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater Res Bull, 2013, 48: 869–877

    Article  CAS  Google Scholar 

  15. Gao F, Chen X, Yin K, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu J. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater, 2007, 19: 2889–2892

    Article  CAS  Google Scholar 

  16. Mao J, Jiang G, Chen Q, Guan B. Influences of citric acid on the metastability of α-calcium sulfate hemihydrate in CaCl2 solution. Colloid Surface A, 2014, 443: 265–271

    Article  CAS  Google Scholar 

  17. Prisciandaro M, Lancia A, Musmarra D. The retarding effect of citric acid on calcium sulfate nucleation kinetics. Ind Eng Chem Res, 2003, 42: 6647–6652

    Article  CAS  Google Scholar 

  18. Xiong Y. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. Chem Commun, 2011, 47: 1580–1582

    Article  CAS  Google Scholar 

  19. Ye L, Liu J, Gong C, Tian L, Peng T, Zan L. Two different roles of metallic Ag on Ag/AgX/BiOX (X=Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal, 2012, 2: 1677–1683

    Article  CAS  Google Scholar 

  20. Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun, 2011, 47: 7054–7056

    Article  CAS  Google Scholar 

  21. Lu L, Kong L, Jiang Z, Lai HHC, Xiao T, Edwards PP. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr. Catal Lett, 2012, 142: 771–778

    Article  CAS  Google Scholar 

  22. Yu C, Fan C, Meng X, Yang K, Cao F, Li X. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes. Reac Kinet Mech Cat, 2011, 103: 141–151

    Article  CAS  Google Scholar 

  23. Lin Z, Liu S, Sun X, Xie M, Li J, Li X, Chen Y, Chen J, Huo D, Zhang M, Zhu Q, Liu M. The effects of citric acid on the synthesis and performance of silver-tin oxide electrical contact materials. J Alloy Compd, 2014, 588: 30–35

    Article  CAS  Google Scholar 

  24. Xiong Y. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. Chem Commun, 2011, 47: 1580–1582

    Article  CAS  Google Scholar 

  25. Xiong Y, McLellan JM, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew Chem, 2007, 119: 804–808

    Article  Google Scholar 

  26. Feng Y, Li L, Li J, Wang J, Liu L. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J Hazard Mater, 2011, 192: 538–544

    Article  CAS  Google Scholar 

  27. Xia J, Yin S, Li H, Xu H, Xu L, Xu Y. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans, 2011, 40: 5249–5258

    Article  CAS  Google Scholar 

  28. Zhang S, Peng F, Wang H, Yu H, Zhang S, Yang J, Zhao H. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Cata Commun, 2011, 12: 689–693

    Article  CAS  Google Scholar 

  29. Wang D, Xue G, Zhen Y, Fu F, Li D. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. J Mater Chem, 2012, 22: 4751–4758

    Article  CAS  Google Scholar 

  30. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K. Ag/ZnO hetero-structure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem, 2007, 46: 6980–6986

    Article  CAS  Google Scholar 

  31. Yu J, Xiong J, Cheng B, Liu S. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Cata B: Environ, 2005, 60: 211–221

    Article  CAS  Google Scholar 

  32. Cheng H, Huang B, Wang Z, Qin X, Zhang X, Dai Y. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity. Chem-Eur J, 2011, 17: 8039–8043

    Article  CAS  Google Scholar 

  33. Xu J, Meng W, Zhang Y, Li L, Guo C. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway. Appl Catal B: Environ, 2011, 107: 355–362

    Article  CAS  Google Scholar 

  34. Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J Phys Chem C, 2012, 116: 11004–11012

    Article  CAS  Google Scholar 

  35. Schwartzberg AM, Zhang JZ. Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C, 2008, 112: 10323–10337

    Article  CAS  Google Scholar 

  36. Zhang Y, Tang ZR, Fu X, Xu YJ. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl Catal B: Environ, 2011, 106: 445–452

    Article  CAS  Google Scholar 

  37. Zhang LS, Wong KH, Zhang DQ, Hu C, Yu JC, Chan CY, Wong PK. Zn:In(OH)ySz solid solution nanoplates: synthesis, characterization, and photocatalytic mechanism. Environ Sci Technol, 2009, 43: 7883–7888

    Article  CAS  Google Scholar 

  38. Henderson MA. A surface science perspective on photocatalysis. Surf Sci Rep, 2011, 66: 185–297

    Article  CAS  Google Scholar 

  39. Pan JH, Cai Z, Yu Y, Zhao XS. Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis. J Mater Chem, 2011, 21: 11430–11438

    Article  CAS  Google Scholar 

  40. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 2012, 24: 229–251

    Article  CAS  Google Scholar 

  41. Jiang G, Wang R, Wang X, Jiang G, Wang R, Wang X, Xi X, Hu R, Zhou Y, Chen W. Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl Mater Inter, 2012, 4: 4440–4444

    Article  CAS  Google Scholar 

  42. Yu JG, Dai GP, Huang BB. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C, 2009, 113: 16394–16401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caimei Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mao, X., Zhang, X. et al. Citric acid-assisted synthesis of nano-Ag/BiOBr with enhanced photocatalytic activity. Sci. China Chem. 58, 457–466 (2015). https://doi.org/10.1007/s11426-014-5152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5152-5

Keywords

Navigation