Skip to main content
Log in

Synthesis, structure, and catalytic activity of rare-earth metal amides with a neutral pyrrolyl-functionalized indolyl ligand

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The reactions of neutral pyrrolyl-functionalized indole with rare-earth metal amides [(Me3Si)2N]3RE(µ-Cl)Li(THF)3 produced the rare-earth metal complexes [(Me3Si)2N]2RE([η1:µ2-3-(2-(N-CH3)C4H3NCH=N-CH2CH2)C8H5N])(µ-Cl)Li(THF) (RE = Er, Y) having indolyl ligand η1 bonded to rare-earth metal ion and η2 bonded to lithium ion. The catalytic activities of these lanthanide amido complexes for addition of terminal alkynes to aromatic nitriles were explored. Results reveal that these complexes displayed a good catalytic activity for the addition reaction under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. Rhodium-catalyzed enantioselective synthesis, crystal structures, and photophysical properties of helically chiral 1,1′-bitriphenylenes. J Am Chem Soc, 2012, 134: 4080–4083

    Article  CAS  Google Scholar 

  2. McLeod MC, Wilson ZE, Brimble MA. Formal synthesis of berkelic acid: a lesson in α-alkylation chemistry. J Org Chem, 2012, 77: 400–416

    Article  CAS  Google Scholar 

  3. Plażuk D, Zakrzewski J, Nakatani K, Makal A, Woźniak K, DomagaŁa S. Electronic and molecular structures and bulk second-order nonlinear optical properties of ferrocenyl ynones. RSC Adv, 2012, 2: 3512–3524

    Article  Google Scholar 

  4. Tsvetkov NP, Bayir A, Schneider S, Brewer M. A ring fragmentation approach to medium-sized cyclic 2-alkynones. Org Lett, 2012, 14: 264–267

    Article  CAS  Google Scholar 

  5. Moteki SA, Han JW, Arimitsu S, Akakura M, Nakayama K, Maruoka K. An achiral-acid-induced switch in the enantioselectivity of a chiral cis-diamine-based organocatalyst for asymmetric aldol and Mannich reactions. Angew Chem Int Ed, 2012, 51: 1187–1190

    Article  CAS  Google Scholar 

  6. Ramachary DB, Venkaiah C, Krishna PM. Discovery of 2-aminobuta-1,3-enynes in asymmetric organocascade catalysis: construction of drug-like spirocyclic cyclohexanes having five to six contiguous stereocenters. Chem Commun, 2012, 48: 2252–2254

    Article  CAS  Google Scholar 

  7. Shi SL, Kanai M, Shibasaki M. Asymmetric synthesis of dihydropyranones from ynones by sequential copper(I)-catalyzed direct aldol and silver(I)-catalyzed oxy-Michael reactions. Angew Chem Int Ed, 2012, 51: 3932–3935

    Article  CAS  Google Scholar 

  8. Yamamoto A, Ueda A, Brémond P, Tiseni PS, Kishi Y. Total synthesis of Halichondrin C. J Am Chem Soc, 2012, 134: 893–896

    Article  CAS  Google Scholar 

  9. Jiang HF, Pan XY, Huang LB, Zhao J, Shi DB. Synthesis of 4H-cyclopenta[c]furans via cooperative PdCl2-FeCl2 catalyzed cascade cyclization reaction involving a novel acyl rearrangement process. Chem Commun, 2012, 48: 4698–4700

    Article  CAS  Google Scholar 

  10. Wu XF, Neumann H, Beller M. A general and convenient palladium-catalyzed carbonylative Sonogashira coupling of aryl bromides. Chem Eur J, 2010, 16: 12104–12107

    Article  CAS  Google Scholar 

  11. Wu XF, Neumann H, Beller M. Convenient and general palladium-catalyzed carbonylative Sonogashira coupling of aryl amines. Angew Chem Int Ed, 2011, 50: 11142–11146

    Article  CAS  Google Scholar 

  12. Wu XF, Sundararaju B, Neumann H, Dixneuf PH, Beller M. A gen eral palladium-catalyzed carbonylative Sonogashira coupling of aryl triflates. Chem Eur J, 2011, 17: 106–110

    Article  CAS  Google Scholar 

  13. Delude L, Masdeu AM, Alper H. Coupling and carbonylation of iodoaromatics and terminal alkynes or alkynols catalyzed by a dimeric palladium hydroxide. Synthesis, 1994, 11: 1149–1151

    Article  Google Scholar 

  14. Ahmed MSM, Mori A. Carbonylative Sonogashira coupling of terminal alkynes with aqueous ammonia. Org Lett, 2003, 5: 3057–3060

    Article  CAS  Google Scholar 

  15. Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system. Chem Commun, 2006, 21: 2236–2238

    Article  Google Scholar 

  16. Liu JM, Peng XG, Sun W, Zhao YW, Xia CG. Magnetically separable Pd catalyst for carbonylative Sonogashira coupling reactions for the synthesis of α,β-alkynyl ketones. Org Lett, 2008, 10: 3933–3936

    Article  CAS  Google Scholar 

  17. Wang Y, Liu JH, Xia CG. Cross-linked polymer supported palladium catalyzed carbonylative Sonogashira coupling reaction in water. Tetrahedron Lett, 2011, 52: 1587–1591

    Article  CAS  Google Scholar 

  18. Park A, Park K, Kim Y, Lee S. Pd-catalyzed carbonylative reactions of aryl iodides and alkynyl carboxylic acids via decarboxylative couplings. Org Lett, 2011, 13: 944–947

    Article  CAS  Google Scholar 

  19. Alonso DA, Nájera C, Pacheco MC. Synthesis of ynones by palladium-catalyzed acylation of terminal alkynes with acid chlorides. J Org Chem, 2004, 69: 1615–1619

    Article  CAS  Google Scholar 

  20. Chen L, Li CJ, A remarkably efficient coupling of acid chlorides with alkynes in water. Org Lett, 2004, 6: 3151–3153

    Article  CAS  Google Scholar 

  21. Cox RJ, Ritson DJ, Dane TA, Berge J, Charmant JPH, Kantacha A. Room temperature palladium catalysed coupling of acyl chlorides with terminal alkynes. Chem Commun, 2005: 1037–1039

    Google Scholar 

  22. Palimkar SS, Kumar PH, Jogdand NR, Daniel T, Lahoti RJ, Srinivasan KV. Copper-, ligand- and solvent-free synthesis of ynones by coupling acid chlorides with terminal alkynes. Tetrahedron Lett, 2006, 47: 5527–5530

    Article  CAS  Google Scholar 

  23. Baxendale IR, Schou SC, Sedelmeier J, Ley SV. Multi-step synthesis by using modular flow reactors: the preparation of ynones and their use in heterocycle synthesis. Chem Eur J, 2010, 16: 89–94

    Article  CAS  Google Scholar 

  24. Santra S, Dhara K, Ranjan P, Bera P, Dash J, Mandal SK. A supported palladium nanocatalyst for copper free acyl Sonogashira reactions: one-pot multicomponent synthesis of N-containing heterocycles. Green Chem, 2011, 13: 3238–3247

    Article  CAS  Google Scholar 

  25. Bakherad M, Keivanloo A, Bahramian B, Jajarmi S. Synthesis of ynones via recyclable polystyrene-supported palladium(0) complex catalyzed acylation of terminal alkynes with acyl chlorides under copper- and solvent-free conditions. Synlett, 2011, 3: 311–314

    Article  Google Scholar 

  26. Gandeepan P, Parthasarathy K, Su TH, Cheng CH. Iron-catalyzed synthesis of β-chlorovinyl and α,β-alkynyl ketones from terminal and silylated alkynes with acid chlorides. Adv Synth Catal, 2012, 354: 457–468

    Article  CAS  Google Scholar 

  27. Shen QS, Huang W, Wang JL, Zhou XG. Ln[N(SiMe3)2]3/RNH2 catalyzed monoaddition of terminal alkynes to nitriles: a novel and concise access to the synthesis of ynones. Organometallics, 2008, 27: 301–303

    Article  CAS  Google Scholar 

  28. Ding H, Lu CR, Hu XL, Zhao B, Wu B, Yao YM. Addition of terminal alkynes to aromatic nitriles catalyzed by divalent lanthanide amides supported by amidates: synthesis of ynones. Synlett, 2013, 24: 1269–1274

    Article  CAS  Google Scholar 

  29. Oyamada J, Hou ZM. Regioselective C-H alkylation of anisoles with olefins catalyzed by cationic half-Sandwich rare earth alkyl complexes. Angew Chem Int Ed, 2012, 51: 12828–12832

    Article  CAS  Google Scholar 

  30. Pan Y, Xu T, Yang GW, Jin K, Lu XB. Bis(oxazolinyl)phenyl-ligated rare-earth-metal complexes: highly regioselective catalysts for cis-1,4-polymerization of isoprene. Inorg Chem, 2013, 52: 2802–2808

    Article  CAS  Google Scholar 

  31. Dunne JF, Fulton DB, Ellern A, Sadow AD. Concerted C-N and C-H bond formation in a magnesium-catalyzed hydroamination. J Am Chem Soc, 2010, 132: 17680–17683

    Article  CAS  Google Scholar 

  32. Reznichenko AL, Hultzsch KC. C1-symmetric rare-earth-metal aminodiolate complexes for intra- and intermolecular asymmetric hydroamination of alkenes. Organometallics, 2013, 32: 1394–1408

    Article  CAS  Google Scholar 

  33. Roux EL, Liang YC, Storz MP, Anwander R. Intramolecular hydroamination/cyclization of aminoalkenes catalyzed by Ln[N(SiMe3)2]3 grafted onto periodic mesoporous silicas. J Am Chem Soc, 2010, 132: 16368–16371

    Article  Google Scholar 

  34. Zhou SL, Wu ZS, Rong JW, Wang SW, Yang GS, Zhu XC, Zhang LJ. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes. Chem Eur J, 2012, 18: 2653–2659

    Article  CAS  Google Scholar 

  35. Zhou SL, Wang HY, Ping J, Wang SW, Zhang LJ, Zhu XC, Wei Y, Wang FH, Feng ZJ, Gu XX, Yang S, Miao H. Synthesis and characterization of organolanthanide complexes with a calix[4]-pyrrolyl ligand and their catalytic activities toward hydrophosphonylation of aldehydes and unactivated ketones. Organometallics, 2012, 31: 1696–1702

    Article  CAS  Google Scholar 

  36. Nako AE, White AJP, Crimmin MR. A metal-amide dependent, catalytic C-H functionalisation of triphenylphosphonium methylide. Chem Sci, 2013, 4: 691–695

    Article  CAS  Google Scholar 

  37. Yang S, Zhu XC, Zhou SL, Wang SW, Feng ZJ, Wei Y, Miao H, Guo LP, Wang FH, Zhang GC, Gu XX, Mu XL. Synthesis, structure, and catalytic activity of novel trinuclear rare-earth metal amido complexes incorporating µ-η51 bonding indolyl and µ3-oxo groups. Dalton Trans, 2014, 43: 2521–2533

    Article  CAS  Google Scholar 

  38. Hong S, Marks TJ. Organolanthanide-catalyzed hydroamination. Acc Chem Res, 2004, 37: 673–686

    Article  CAS  Google Scholar 

  39. Zhang WX, Nishiura M, Hou ZM. Catalytic addition of terminal alkynes to carbodiimides by half-sandwich rare earth metal complexes. J Am Chem Soc, 2005, 127: 16788–16789

    Article  CAS  Google Scholar 

  40. Zhang LJ, Wang SW, Sheng EH, Zhou SL. A solvent-free synthesis of α,α′-bis(substituted benzylidene) cycloalkanones catalyzed by lanthanide amides [(Me3Si)2N]3Ln(µ-Cl)Li(THF)3 under microwave irradiation. Green Chem, 2005, 7: 683–686

    Article  CAS  Google Scholar 

  41. Zhang LJ, Wang SW, Zhou SL, Yang GS, Sheng EH. Cannizzaro-type disproportionation of aromatic aldehydes to amides and alcohols by using either a stoichiometric amount or a catalytic amount of lanthanide compounds. J Org Chem, 2006, 71: 3149–3153

    Article  CAS  Google Scholar 

  42. Zhou SL, Wang SW, Yang GS, Li QH, Zhang LJ, Yao ZJ, Zhou ZK, Song HB. Synthesis, structure, and diverse catalytic activities of [ethylenebis(indenyl)]lanthanide(III) amides on N-H and C-H addition to carbodiimides and ɛ-caprolactone polymerization. Organometallics, 2007, 26: 3755–3761

    Article  CAS  Google Scholar 

  43. Li QH, Wang SW, Zhou SL, Yang GS, Zhu XC, Liu YY. Highly atom efficient guanylation of both aromatic and secondary amines catalyzed by simple lanthanide amides. J Org Chem, 2007, 72: 6763–6767

    Article  CAS  Google Scholar 

  44. Casely IJ, Ziller JW, Evans WJ. C-H activation via carbodiimide insertion into yttrium-carbon alkynide bonds: an organometallic alderene reaction. Organometallics, 2011, 30: 4873–4881

    Article  CAS  Google Scholar 

  45. Dubé T, Conoci S, Gambarotta S, Yap GPA, Vasapollo G. Stickstoffixierung: reduktion von N2 durch vier metallfragmente unter bildung eines vierkernigen Samarium-Distickstoffkomplexes. Angew Chem, 1999, 111: 3890–3892

    Article  Google Scholar 

  46. Ganesan M, Gambarotta S, Yap GPA. Highly reactive SmII macrocyclic clusters: precursors to N2 reduction. Angew Chem Int Ed, 2001, 40: 766–769

    Article  CAS  Google Scholar 

  47. Yang Y, Cui DM, Chen XS. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-σ-C bonds. Dalton Trans, 2010, 39: 3959–3967

    Article  CAS  Google Scholar 

  48. Zhou SL, Wu SH, Zhu H, Wang SW, Zhu XC, Zhang LJ, Yang GS, Cui DH, Wang HY. Synthesis, structure and catalytic activity of alkali metal-free bent-sandwiched lanthanide amido complexes with calix[4]-pyrrolyl ligands. Dalton Trans, 2011, 40: 9447–9553

    Article  CAS  Google Scholar 

  49. Liu C, Zhou SL, Wang SW, Zhang LJ, Yang GS. Rare earth metal bis(trimethylsilyl)amido complexes bearing pyrrolyl-methylamide ligand. Synthesis, structure, and catalytic activity towards guanylation of amines. Dalton Trans, 2010, 39: 8994–8999

    Article  CAS  Google Scholar 

  50. Zhu XC, Zhou SL, Wang SW, Wei Y, Zhang LJ, Wang FH, Wang SY, Feng ZJ. Rare-earth metal complexes having an unusual indolyl-1,2-dianion through C-H activation with a novel η1:(µ211 bonding with metals. Chem Commun, 2012, 48: 12020–12022

    Article  CAS  Google Scholar 

  51. Zhu XC, Wang SW, Zhou SL, Wei Y, Zhang LJ, Wang FH, Feng ZJ, Guo LP, Mu XL. Lanthanide amido complexes incorporating amino-coordinate-lithium bridged bis(indolyl) ligands: synthesis, characterization, and catalysis for hydrophosphonylation of aldehydes and aldimines. Inorg Chem, 2012, 51: 7134–7143

    Article  CAS  Google Scholar 

  52. Feng ZJ, Zhu XC, Wang SY, Wang SW, Zhou SL, Wei Y, Zhang GC, Deng BJ, Mu XL. Synthesis, structure, and reactivity of lanthanide complexes incorporating indolyl ligands in novel hapticities. Inorg Chem, 2013, 52: 9549–9556

    Article  CAS  Google Scholar 

  53. Zhou SL, Wang SW, Yang GS, Liu XY, Sheng EH, Zhang KH, Cheng L, Huang ZX. Synthesis, structure, and catalytic activity of tetracoordinate lanthanide amides [(Me3Si)2N]3Ln(µ-Cl)Li(THF)3 (Ln = Nd, Sm, Eu). Polyhedron, 2003, 22: 1019–1024

    Article  CAS  Google Scholar 

  54. Xie MH, Liu XY, Liu L, Wu YY, Wang, SW, Zhou SL, Sheng EH, Yang GS, Huang ZX. Synthesis, structure and catalytic activity comparison of tris-and tetracoordinated lanthanide amides. Chin J Chem, 2004, 22: 678–682

    Article  CAS  Google Scholar 

  55. Sheldrick GM. SADABS: program for empirical absorption correction of area detector data. Göttingen: University of Göttingen, 1996

    Google Scholar 

  56. Sheldrick GM. SHELXTL 5.10 for Windows NT: structure determination software programs. Madison: Bruker Analytical X-ray Systems, Inc., 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XianCui Zhu or ShaoWu Wang.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

ZHU XianCui received a BSc degree from Anhui University in 1998, MSc and PhD degrees from Anhui Normal University in 2008 and 2012, respectively. She worked in Wuhu Teachers College from 1998, and then joined the faculty of Anhui Normal University in 2005. Her research interests cover the synthesis and application of organolanthanide complexes.

WANG ShaoWu received his BSc and MS degrees from Anhui Normal University in 1985 and 1992, respectively. After obtaining a PhD from The Chinese University of Hong Kong in 1999, he spent one year as a postdoctoral fellow at The Chinese University of Hong Kong (supervisor: Professor Zuowei Xie). He then joined the faculty of the Anhui Normal University as a full professor of chemistry. He serves as the vice-president of the Anhui Normal University since June 2009, and has co-authored about 110 publications in peer-reviewed journals, 5 patents, and received two 2nd prize awards from the State Commission of Education and Anhui Province. His research interests include organolanthanide chemistry and organic synthesis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhu, X., Zhou, S. et al. Synthesis, structure, and catalytic activity of rare-earth metal amides with a neutral pyrrolyl-functionalized indolyl ligand. Sci. China Chem. 57, 1090–1097 (2014). https://doi.org/10.1007/s11426-014-5150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5150-7

Keywords

Navigation