Skip to main content
Log in

A new class of ion-ion interaction: Z-bond

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen-bond interactions in ionic liquids have been simply described by the conventional hydrogen-bond model of A-H⋯B. Coupling with the strong electrostatic force, however, hydrogen bond between the cation and anion shows particular features in the geometric, energetic, electronic, and dynamic aspects, which is inherently different from that of the conventional hydrogen bond. A general model could be expressed as +[A-H⋯B], in which A and B represent heavy atoms and “+” and “−” represent the charges of the cation containing A atom and anion containing B atom, respectively. Because the structure shows a “zig-zag” motif, this coupling interaction is defined here as the Z-bond. The new model could be generally used to describe the interactions in ionic liquids, as well as bio-systems involved in ions, ionic reaction, and ionic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elaiwi A, Hitchcock PB, Seddon KR, Srinivasan N, Tan YM, Welton T, Zoraa JA. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(lli) ionic liquids. J Chem Soc Dalton Trans, 1995: 3467–3472

    Google Scholar 

  2. Hitchcock PB, Seddon KR, Welton T. Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. J Chem Soc Dalton Trans, 1993: 2639–2643

    Google Scholar 

  3. Abdul-Sada AK, Greenway AM, Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA. Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc, Chem Commun, 1986: 1753–1754

    Google Scholar 

  4. Holbrey JD, Reichert WM, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers RD. Liquid clathrate formation in ionic liquid-aromatic mixtures. Chem Commun, 2003: 476–477

    Google Scholar 

  5. Reichert WM, Holbrey JD, Swatloski RP, Gutowski KE, Visser AE, Nieuwenhuyzen M, Seddon KR, Rogers RD. Solid-state analysis of low-melting 1,3-dialkylimidazolium hexafluorophosphate salts (ionic liquids) by combined X-ray crystallographic and computational analyses. Cryst Growth Des, 2007, 7: 1106–1114

    Article  CAS  Google Scholar 

  6. Holbrey JD, Reichert WM, Rogers RD. Crystal structures of imidazolium bis(trifluoromethanesulfonyl)-imide ‘ionic liquid’ salts: the first organic salt with a cis-TFSI anion conformation. Dalton Trans, 2004: 2267–2271

    Google Scholar 

  7. Rogers RD, Seddon KR. Ionic liquids: solvents of the future? Science, 2003, 302: 792–793

    Article  Google Scholar 

  8. Dean PM, Pringle JM, MacFarlane DR. Structural analysis of low melting organic salts: perspectives on ionic liquids. Phys Chem Chem Phys, 2010, 12: 9144–9153

    Article  CAS  Google Scholar 

  9. Fumino K, Peppel T, Geppert-Rybczyńska M, Zaitsau DH, Lehmann JK, Verevkin SP, Köckerling M, Ludwig R. The influence of hydrogen bonding on the physical properties of ionic liquids. Phys Chem Chem Phys, 2011, 13: 14064–14075

    Article  CAS  Google Scholar 

  10. Dupont J. From molten salts to ionic liquids: a “nano” journey. Acc Chem Res, 2011, 44: 1223–1231

    Article  CAS  Google Scholar 

  11. Dong K, Zhang S. Hydrogen bonds: a structural insight into ionic liquids. Chem Eur J, 2012, 18: 2748–2761

    Article  CAS  Google Scholar 

  12. Dong K, Zhang S, Wang D, Yao X. Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A, 2006, 110: 9775–9782

    Article  CAS  Google Scholar 

  13. Dong K, Song Y, Liu X, Cheng W, Yao X, Zhang S. Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B, 2012, 116: 1007–1017

    Article  CAS  Google Scholar 

  14. Sun J, Ren J, Zhang S, Cheng W. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett, 2009, 50: 423–426

    Article  CAS  Google Scholar 

  15. Pauling L. The Nature of the Chemical Bond. NY: Cornell University Press, 1960

    Google Scholar 

  16. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Definition of the hydrogen bond. Pure Appl Chem, 2011, 83: 1637–1641

    CAS  Google Scholar 

  17. Vinogradov SN, Linnell RH. Hydrogen Bonding. New York: van Nostrand Reinhold, 1971

    Google Scholar 

  18. Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed, 2002, 41: 48–76

    Article  CAS  Google Scholar 

  19. Gilli G, Gilli P. The Nature of the Hydrogen Bond. Oxford: Oxford University Press, 2009

    Book  Google Scholar 

  20. Gilli G, Gilli P. Hydrogen bond models and theories: the dual hydrogen bond model and its consequences. J Mol Struct, 2010, 972: 2–10

    Article  CAS  Google Scholar 

  21. Mautner M. Update 1 of: strong ionic hydrogen bonds. Chem Rev, 2011, 112: 22–103

    Google Scholar 

  22. Crabtree RH. A new type of hydrogen bond. Science, 1998, 282: 2000–2001

    Article  CAS  Google Scholar 

  23. Dymek CJ, Grossie DA, Fratini AV, Adams WW. Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride. J Mol Struct, 1989, 213: 25–34

    Article  CAS  Google Scholar 

  24. Izgorodina EI, MacFarlane DR. Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids. J Phys Chem B, 2011, 115: 14659–14667

    Article  CAS  Google Scholar 

  25. Hunt PA, Kirchner B, Welton T. Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J, 2006, 12: 6762–6775

    Article  CAS  Google Scholar 

  26. Fumino K, Wulf A, Ludwig R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed, 2008, 47: 8731–8734

    Article  CAS  Google Scholar 

  27. Fumino K, Wulf A, Ludwig R. The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed, 2008, 47: 3830–3834

    Article  CAS  Google Scholar 

  28. Fumino K, Wulf A, Ludwig R. Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed, 2009, 48: 3184–3186

    Article  CAS  Google Scholar 

  29. Peppel T, Roth C, Fumino K, Paschek D, Köckerling M, Ludwig R. The influence of hydrogen-bond defects on the properties of ionic liquids. Angew Chem Int Ed, 2011, 50: 6661–6663

    Article  CAS  Google Scholar 

  30. Roth C, Peppel T, Fumino K, Köckerling M, Ludwig R. The importance of hydrogen bonds for the structure of ionic liquids: single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region. Angew Chem Int Ed, 2010, 49: 10221–10224

    Article  CAS  Google Scholar 

  31. Thar J, Brehm M, Seitsonen AP, Kirchner B. Unexpected hydrogen bond dynamics in imidazolium-based ionic liquids. J Phys Chem Lett, 2009, 113: 15129–15132

    Article  CAS  Google Scholar 

  32. Li H, Lu Y, Wu W, Liu Y, Peng C, Liu H, Zhub W. Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications. Phys Chem Chem Phys, 2013, 15: 4405–4414

    Article  CAS  Google Scholar 

  33. Shi C, Zhao Y, Xin J, Wang J, Lu X, Zhang X, Zhang SJ. Effects of catons and anions of ionic liquids on the production of 5-hydroxymethylfurfural from fructose. Chem Commun, 2012, 48: 4103–4105

    Article  CAS  Google Scholar 

  34. Sun J, Han LJ, Cheng WG, Wang JQ, Zhang XP, Zhang SJ. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions. ChemSusChem, 2011, 4: 502–507

    Article  CAS  Google Scholar 

  35. Sun J, Ren JY, Zhang SJ, Cheng W. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett, 2009, 50: 423–426

    Article  CAS  Google Scholar 

  36. Pârvulescu VI, Hardacre C. Catalysis in ionic liquids. Chem Rev, 2007, 107: 2615–2665

    Article  Google Scholar 

  37. Sureshkumar M, Lee CK. Biocatalytic reactions in hydrophobic ionic liquids. J Mol Catal B, 2009, 60: 1–12

    Article  CAS  Google Scholar 

  38. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc, 2002, 124: 4974–4975

    Article  CAS  Google Scholar 

  39. Cardoso L, Micaelo NM. DNA molecular solvation in neat ionic liquids. ChemPhysChem, 2011, 12: 275–277

    Article  CAS  Google Scholar 

  40. Xu GC, Ma XM, Zhang L, Wang ZM, Gao S. Disorder-order ferro-electric transition in the metal formate framework of [NH4][Zn-(HCOO)3]. J Am Chem Soc, 2010, 132: 9588–9590

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suojiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Zhang, S. & Wang, Q. A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58, 495–500 (2015). https://doi.org/10.1007/s11426-014-5147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5147-2

Keywords

Navigation