Skip to main content
Log in

Synthesis and characterization of MH⋯HOR dihydrogen bonded ruthenium and osmium complexes (η5-C5H4CH2OH)MH(PPh3)2 (M = Ru, Os)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Treatment of RuCl2(PPh3)3 with 6-dimethylaminopentafulvene in THF in the presence of water produced (η5-C5H4CHO) RuCl(PPh3)2, which was reduced by NaBH4 to give the Ru-H⋯HO dihydrogen bonded complex (η5-C5H4CH2OH) RuH(PPh3)2. The dihydrogen bonded complex (η5-C5H4CH2OH)RuH(PPh3)2 could also be synthesized by the reduction of complex (η5-C5H4CHO)RuH(PPh3)2, which was obtained by the reaction of RuHCl(PPh3)3 with 6-dimethylaminopentafulvene in the presence of water. The analogous dihydrogen bonded osmium complex (η5-C5H4CH2OH)OsH(PPh3)2 was similarly prepared. Single crystal structures and DFT calculations support the presence of intra-molecular H…H interaction, with separations of around 1.9 to 2.0 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TF. A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc Chem Res, 1996, 29: 348–354

    Article  CAS  Google Scholar 

  2. Custelcean R, Jackson JE. Dihydrogen bonding: structures, energetics, and dynamics. Chem Rev, 2001, 101: 1963–1980

    Article  CAS  Google Scholar 

  3. Epstein LM, Shubina ES. New types of hydrogen bonding in organometallic chemistry. Coord Chem Rev, 2002, 231: 165–181

    Article  CAS  Google Scholar 

  4. Bakhmutov VI. Proton transfer to hydride ligands with formation of dihydrogen complexes: a physicochemical view. Eur J Inorg Chem, 2005: 245–255

    Google Scholar 

  5. Peruzzini M, Poli R. Recent Advances in Hydride Chemistry. Elsevier: Amsterdam, 2001

    Google Scholar 

  6. Bakhmutov VI. Dihydrogen Bonds: Principles, Experiments, and Applications. Hoboken: John Wiley & Sons, 2008

    Book  Google Scholar 

  7. Besora M, Lledos A, Maseras F. Protonation of transition-metal hydrides: a not so simple process. Chem Soc Rev, 2009, 38: 957–966

    Article  CAS  Google Scholar 

  8. Belkova NV, Shubina ES, Epstein LM. Diverse world of unconventional hydrogen bonds. Acc Chem Res, 2005, 38: 624–631

    Article  CAS  Google Scholar 

  9. Grotjahn DB, Kraus JE, Amouri H, Rager MN, Cooksy AL, Arita AJ, Cortes-Llamas SA, Mallari AA, DiPasquale AG, Moore CE, Liable-Sands LM, Golen JD, Zakharov LN, Rheingold AL. Multimodal study of secondary interactions in Cp*Ir complexes of imidazolylphosphines bearing an NH group. J Am Chem Soc, 2010, 132: 7919–7934

    Article  CAS  Google Scholar 

  10. Sandhya KS, Suresh CH. Water splitting promoted by a ruthenium(II) PNN complex: an alternate pathway through a dihydrogen complex for hydrogen production. Organometallics, 2011, 30: 3888–3891

    Article  CAS  Google Scholar 

  11. Schley ND, Dobereiner GE, Crabtree RH. Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics, 2011, 30: 4174–4179

    Article  CAS  Google Scholar 

  12. Carroll ME, Barton BE, Rauchfuss TB, Carroll PJ. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. J Am Chem Soc, 2012, 134: 18843–18852

    Article  CAS  Google Scholar 

  13. O WWN, Lough AJ, Morris RH. Factors favoring efficient bifunctional catalysis. Study of a ruthenium(II) hydrogenation catalyst containing an N-heterocyclic carbene with a primary amine donor. Organometallics, 2012, 31: 2137–2151

    Article  CAS  Google Scholar 

  14. Dobereiner GE, Wu JG, Manas MG, Schley ND, Takase MK, Crabtree RH, Hazari N, Maseras F, Nova A. Mild, reversible reaction of iridium(III) amido complexes with carbon dioxide. Inorg Chem, 2012, 51: 9683–9693

    Article  CAS  Google Scholar 

  15. Belkova NV, Bakhmutova-Albert EV, Gutsul EI, Bakhmutov VI, Golub IE, Filippov OA, Epstein LM, Peruzzini M, Rossin A, Zanobini F, Shubina ES. Dihydrogen bonding in complex (PP3)RuH-(η1-BH4) featuring two proton-accepting hydride sites: experimental and theoretical studies. Inorg Chem, 2014, 53: 1080–1090

    Article  CAS  Google Scholar 

  16. Besora M, Lledos A, Maseras F. Protonation of transition-metal hydrides: a not so simple process. Chem Soc Rev, 2009, 38: 957–966

    Article  CAS  Google Scholar 

  17. Belkova NV, Epstein LM, Shubina ES. Dihydrogen bonding, proton transfer and beyond: what we can learn from kinetics and thermodynamics. Eur J Inorg Chem, 2010: 3555–3565

    Google Scholar 

  18. Filippov OA, Belkova NV, Epstein LM, Lledos A, Shubina ES. Hydrogendeuterium exchange in hydride chemistry: dihydrogen bonded complexes as key intermediates. Comput Theor Chem, 2012, 998: 129–140

    Article  CAS  Google Scholar 

  19. Levina VA, Rossin A, Belkova NV, Chierotti M, Epstein LM, Filippov OA, Gobetto R, Gonsalvi L, Lledos A, Shubina ES, Zanobini F, Peruzzini M. Acid-base interaction between transition-metal hydrides: dihydrogen bonding and dihydrogen evolution. Angew Chem Int Ed, 2011, 50: 1367–1370

    Article  CAS  Google Scholar 

  20. Grotjahn DB, Kraus JE, Amouri H, Rager MN, Cooksy AL, Arita AJ, Cortes-Llamas SA, Mallari AA, DiPasquale AG, Moore CE, Liable-Sands LM, Golen JD, Zakharov LN, Rheingold AL. Multimodal study of secondary interactions in Cp*Ir complexes of imidazolylphosphines bearing an NH group. J Am Chem Soc, 2010, 132: 7919–7934

    Article  CAS  Google Scholar 

  21. Lough AJ, Park S, Ramachandran R, Morris RH. Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir(H(η1-SC5H4NH))2(PCy3)2]BF4·2.7CH2Cl2. J Am Chem Soc, 1994, 116: 8356–8357

    Article  CAS  Google Scholar 

  22. Park S, Lough AJ, Morris RH. Iridium(III) complex containing a unique bifurcated hydrogen bond interaction involving Ir-H…H(N)…F-B atoms. Cryst Crystal and molecular structure of [IrH(η1-SC5H4NH)(η2-SC5H4N)(PPh3)2](BF4)·0.22C6H14. Inorg Chem, 1996, 35: 3001–3006

    Article  CAS  Google Scholar 

  23. Wessel J, Lee JC, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH. An unconventional intermolecular three-center N-H…H2Re hydrogen bond in crystalline [ReH5(PPh3)3]·indole·C6H6. Angew Chem Int Ed, 1995, 34: 2507–2509

    Article  CAS  Google Scholar 

  24. Gusev DG, Lough AJ, Morris RH. New polyhydride anions and proton-hydride hydrogen bonding in their ion pairs. J Am Chem Soc, 1998, 120: 13138–13147

    Article  CAS  Google Scholar 

  25. Abdur-Rashid K, Gusev DG, Landau SE, Lough AJ, Morris RH. Organizing chain structures by use of proton-hydride bonding. The single crystal x-ray diffraction structures of [K(Q)][Os(H)5(PiPr3)2] and [K(Q)][Ir(H)4(PiPr3)2], Q = 18-crown-6 and 1,10-diaza-18-crown-6. J Am Chem Soc, 1998, 120: 11826–11827

    Article  CAS  Google Scholar 

  26. Abdur-Rashid K, Gusev DG, Lough AJ, Morris RH. Intermolecular proton-hydride bonding in ion pairs: synthesis and structural properties of [K(Q)][MH5(PiPr3)2] (M = Os, Ru; Q = 18-crown-6,1-aza-18-crown-6,1,10-diaza-18-crown-6). Organometallics, 2000, 19: 834–843

    Article  CAS  Google Scholar 

  27. Peris E, Lee JC, Rambo JR, Eisenstein O, Crabtree RH. Factors affecting the strength of X-H…H-M hydrogen bonds. J Am Chem Soc, 1995, 117: 3485–3491

    Article  CAS  Google Scholar 

  28. Chu HS, Lau CP, Wong KY, Wong WT. Intramolecular N-H…H-Ru proton-hydride interaction in ruthenium complexes with (2-(dimethylamino)ethyl)cyclopentadienyl and (3-(dimethylamino) propyl)cyclopentadienyl ligands. Hy Hydrogenation of CO2 to formic acid via the N-H…H-Ru hydrogen-bonded complexes. Organometallics, 1998, 17: 2768–2777

    Article  CAS  Google Scholar 

  29. Musashi Y, Sakaki S. Theoretical study of ruthenium-catalyzed hydrogenation of carbon dioxide into formic acid. Reaction mechanism involving a new type of σ-bond metathesis. J Am Chem Soc, 2000, 122: 3867–3877

    Article  CAS  Google Scholar 

  30. Ayllon JA, Sayers SF, Sabo-Etienne S, Donnadieu B, Chaudret B. Proton transfer in aminocyclopentadienyl ruthenium hydride complexes. Organometallics, 1999, 18: 3981–3990

    Article  CAS  Google Scholar 

  31. Shi F. Theoretical investigation on the nature of intramolecular interactions in aminocyclopentadienyl ruthenium hydride complexes. Organometallics, 2006, 25: 4034–4037

    Article  CAS  Google Scholar 

  32. Caballero A, Jalón FA. Three-centre dihydrogen bond with fast interchange between proton and hydride: a very active catalyst for D+-H2 exchange. Chem Commun, 1998: 1879–1880

    Google Scholar 

  33. Espino G, Caballero A, Manzano BR, Santos L, Pérez-Manrique M, Moreno M, Jalón FA. Experimental and computational evidence for the participation of nonclassical dihydrogen species in proton transfer processes on Ru-arene complexes with uncoordinated N centers. Efficient catalytic deuterium labeling of H2 with CD3OD. Organometallics, 2012, 31: 3087–3100

    Article  CAS  Google Scholar 

  34. Leung CW, Zheng W, Wang D, Ng SM, Yeung CH, Zhou Z, Lin Z, Lau CP. Catalytic H/D exchange between organic compounds and D2O with TpRu(PPh3)(CH3CN)H (Tp = hydro(trispyrazolyl)borate). Reaction of TpRu(PPh3)(CH3CN)H with water to form acetamido complex TpRu(PPh3)(H2O)(NHC(O)CH3). Organometallics, 2007, 26: 1924–1933

    Article  CAS  Google Scholar 

  35. Feracin S, Buergi T, Bakhmutov VI, Eremenko I, Vorontsov EV, Vimenits AB, Berke H. Hydrogen/hydrogen exchange and formation of dihydrogen derivatives of rhenium hydride complexes in acidic solutions. Organometallics, 1994, 13: 4194–4202

    Article  CAS  Google Scholar 

  36. Baur J, Jacobsen H, Burger P, Artus G, Berke H, Dahlenburg L. The chemistry of new nitrosyltungsten complexes with pyridyl-functionalized phosphane ligands. Eur J Inorg Chem, 2000: 1411–1422

    Google Scholar 

  37. Van der Zeijden AAH, Sontag C, Bosch W, Shklover V, Berke H, Nanz D, Von Philipsborn W. IR, multinuclear-NMR, and structural studies on [WH(CO)2(NO)(PR3)2]: cis-influence of phosphorus ligands on hydride character. Helv Chim Acta, 1991, 74: 1194–1204

    Article  Google Scholar 

  38. Shubina ES, Belkova NV, Krylov AN, Vorontsov EV, Epstein LM, Gusev DG, Niedermann M, Berke H. Spectroscopic evidence for intermolecular M-H…H-OR hydrogen bonding: interaction of WH(CO)2(NO)L2 hydrides with acidic alcohols. J Am Chem Soc, 1996, 118: 1105–1112

    Article  CAS  Google Scholar 

  39. Silantyev GA, Filippov OA, Tolstoy PM, Belkova NV, Epstein LM, Weisz K, Shubina ES. Hydrogen bonding and proton transfer to ruthenium hydride complex CpRuH(dppe): metal and hydride dichotomy. Inorg Chem, 2013, 52: 1787–1797

    Article  CAS  Google Scholar 

  40. Belkova NV, Shubina ES, Ionidis AV, Epstein LM, Jacobsen H, Messmer A, Berke H. Intermolecular hydrogen bonding of ReH2(CO)(NO)L2 hydrides with perfluoro-tert-butyl alcohol. Competition between M-H…H-OR and M-NO…H-OR Interactions. Inorg Chem, 1997, 36: 1522–1525

    Article  CAS  Google Scholar 

  41. Messmer A, Jacobsen H, Berke H. Probing regioselective intermolecular hydrogen bonding to [Re(CO)H2(NO)(PR3)2] complexes by NMR titration and equilibrium NMR methodologies. Chem Eur J, 1999, 5: 3341–3349

    Article  CAS  Google Scholar 

  42. Sini G, Eisenstein O, Yao W, Crabtree RH. Intermolecular Re-H…H-X hydrogen bonding (X = N, C) involving ReH5(PPh3)3. Inorg Chim Acta, 1998, 280: 26–29

    Article  CAS  Google Scholar 

  43. Desmurs P, Kavallieratos K, Yao W, Crabtree RH. Intermolecular Re-H…H-N and Re-H…base hydrogen bonding estimated in solution by a UV-Vis spectroscopic method. New J Chem, 1999, 23: 1111–1115

    Article  CAS  Google Scholar 

  44. Patel BP, Kavallieratos K, Crabtree RH. Effects of dihydrogen bonding on fluxionality in ReH5(PPh3)2L. J Organomet Chem, 1997, 528: 205–207

    Article  CAS  Google Scholar 

  45. Bosque R, Maseras F, Eisenstein O, Patel BP, Yao W, Crabtree RH. Site preference energetics, fluxionality, and intramolecular M-H…H-N hydrogen bonding in a dodecahedral transition metal polyhydride. Inorg Chem, 1997, 36: 5505–5511

    Article  CAS  Google Scholar 

  46. Ayllón JA, Gervaux C, Sabo-Etienne S, Chaudret B. First NMR observation of the intermolecular dynamic proton transfer equilibrium between a hydride and coordinated dihydrogen: (dppm)2-HRuH…H-OR = [(dppm)2HRu(H2)]+(OR). Organometallics, 1997, 16: 2000–2002

    Article  Google Scholar 

  47. Orlova G, Scheiner S, Kar T. Activation and cleavage of H-R bonds through intermolecular H…H bonding upon reaction of proton donors HR with 18-electron transition metal hydrides. J Phys Chem A, 1999, 103: 514–520

    Article  CAS  Google Scholar 

  48. Shubina ES, Belkova NV, Bakhmutova EV, Vorontsov EV, Bakhmutov VI, Ionidis AV, Bianchini C, Marvelli L, Peruzzini M, Epstein LM. In situ IR and NMR study of the interactions between proton donors and the Re(I) hydride complex [{MeC(CH2PPh2)3}Re(CO)2H]. ReH…H bonding and proton-transfer pathways. Inorg Chim Acta, 1998, 280: 302–305

    Article  CAS  Google Scholar 

  49. Ayllon JA, Sabo-Etienne S, Chaudret B, Ulrich S, Limbach HH. Modulation of quantum mechanical exchange couplings in transition metal hydrides rough hydrogen bonding. Inorg Chim Acta, 1997, 259: 1–4

    Article  CAS  Google Scholar 

  50. Belkova NV, Besora M, Baya M, Dub PA, Epstein LM, Lledós A, Poli R, Revin PO, Shubina E. Effect of the metal atom nature on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten vs. molybdenum. Chem Eur J, 2008, 14: 9921–9934

    Article  CAS  Google Scholar 

  51. Dub PA, Belkova NV, Filippov OA, Silantyev GA, Daran JC, Epstein LM, Poli R, Shubina ES. Protonation of Cp*M(dppe)H hydrides: peculiarities of the osmium congener. Eur J Inorg Chem, 2010: 1489–1500

    Google Scholar 

  52. Belkova NV, Dub PA, Baya M, Houghton J. Kinetics and thermodynamics of proton transfer to Cp*Ru(dppe)H: via dihydrogen bonding and (η2-H2)-complex to the dihydride. Inorg Chim Acta, 2007, 360: 149–162

    Article  CAS  Google Scholar 

  53. Belkova NV, Revin PO, Epstein LM, Vorontsov EV, Bakhmutov VI, Shubina ES, Collange E, Poli R. Kinetics and mechanism of the proton transfer to Cp*Fe(dppe)H: absence of a direct protonation at the metal site. J Am Chem Soc, 2003, 125: 11106–11115

    Article  CAS  Google Scholar 

  54. Belkova NV, Collange E, Dub P, Epstein LM, Lemenovskii DA, Lledós A, Maresca O, Maseras F, Poli R, Revin PO, Shubina ES, Vorontsov EV. Experimental and computational studies of hydrogen bonding and proton transfer to Cp*Fe(dppe)H. Chem Eur J, 2005, 11: 873–888

    Article  CAS  Google Scholar 

  55. Dub PA, Belkova NV, Lyssenko KA, Silantyev GA, Epstein LM, Shubina ES, Daran JC, Poli R. Synthesis and protonation studies of Cp*Os(dppe)H: kinetic vs. thermodynamic control. Organometallics, 2008, 27: 3307–3311

    Article  CAS  Google Scholar 

  56. Gutsul EI, Belkova NV, Babakhina GM, Epstein LM, Shubina ES, Bianchini C, Peruzzini M, Zanobini F. How can the metal affect the proton transfer to the dihydrides [{P(CH2CH2PPh2)3}MH2] (M = Fe, Ru, Os)? A low-temperature electronic spectroscopy study. Russ Chem Bull, 2003, 52: 1204–1206

    Article  CAS  Google Scholar 

  57. Gutsul EI, Belkova NV, Sverdlov MS, Epstein LM, Shubina ES, Bakhmutov VI, Gribanova TN, Minyaev RM, Bianchini C, Peruzzini M, Zanobini F. Low-temperature IR and NMR studies of the interaction of group 8 metal dihydrides with alcohols. Chem Eur J, 2003, 9: 2219–2228

    Article  CAS  Google Scholar 

  58. Bakhmutova EV, Bakhmutov VI, Belkova NV, Besora M, Epstein LM, Lledós A, Nikonov GI, Shubina ES, Tomas J, Vorontsov EV. First investigation of non-classical dihydrogen bonding between an early transition-metal hydride and alcohols: IR, NMR, and DFT approach. Chem Eur J, 2004, 10: 661–671

    Article  CAS  Google Scholar 

  59. Belkova NV, Besora M, Epstein LM, Lledós A, Maseras F, Shubina ES. Influence of media and homoconjugate pairing on transition metal hydride protonation. An IR and DFT study on proton transfer to CpRuH(CO)(PCy3). J Am Chem Soc, 2003, 125: 7715–7725

    Article  CAS  Google Scholar 

  60. Dub PA, Filippov OA, Belkova NV, Daran JC, Epstein LM, Poli R, Shubina ES. Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer. Dalton Trans, 2010, 39: 2008–2015

    Article  CAS  Google Scholar 

  61. Milstein D, Calabrese JC, Williams ID. Formation, structures, and reactivity of cis-hydroxy-, cis-methoxy-, and cis-mercaptoiridium hydrides. Oxidative addition of water to Ir(1). J Am Chem Soc, 1986, 108: 6387–6389

    Article  CAS  Google Scholar 

  62. Stevens RC, Bau R, Milstein D, Blum O, Koetzle TF. Concept of the H(δ+)… H(δ−) interaction. A low-temperature neutron diffraction study of cis-[IrH(OH)(PMe3)4]PF6. J Chem Soc Dalton Trans, 1990, 1429–1432

    Google Scholar 

  63. Lee JC, Rheingold AL, Muller B, Pregosin PS, Crabtree RH. Complexation of an amide to iridium via an iminol tautomer and evidence Ir-H…H-O hydrogen bond. Chem Commun, 1994, 1021–1022

    Google Scholar 

  64. Lee JC, Peris E, Rheingold AL, Crabtree RH. An unusual type of H…H interaction: Ir-H…H-O and Ir-H…H-N hydrogen bonding and its involvement in σ-bond metathesis. J Am J Am Chem Soc, 1994, 116: 11014–11019

    Article  CAS  Google Scholar 

  65. Hallman PS, Stephenson TA, Wilkinson G. Tetrakis (triphenylphosphine)dichloro-ruthenium(II) and tris(triphenylphosphine)-dichlororuthenium(II). Inorg Synth, 1970, 12: 237–240

    Article  CAS  Google Scholar 

  66. Hallman PS, McGarvey BR, Wilkinson G. The preparation and reactions of hydridochlorotris(triphenylphosphine)ruthenium(II) including homogeneous catalytic hydrogenation of alk-1-enes. J Chem Soc (A), 1968, 3143–3150

    Google Scholar 

  67. Hoffmann PR, Caulton KG. Solution structure and dynamics of five-coordinate d6 complexes. J Am Chem Soc, 1975, 97: 4221–4228

    Article  Google Scholar 

  68. Ferrando G, Caulton KG. Dehydrohalogenation as a source of OsHnCl(PPh3)3 (n = 1, 3). Inorg Chem, 1999, 38: 4168–4170

    Article  CAS  Google Scholar 

  69. Bruce MI, Hameister C, Swincer AG, Wallis RC. Chloro(η5-cyclopentadienyl)bis(triphenylphosphine)ruthenium(I): RuCl(PPh3)25-C5H5). Inorg Synth, 1990, 28: 270–272

    CAS  Google Scholar 

  70. Baird GJ, Davies SG, Moon SD, Simpson SJ, Jones H. Bimetallic cyano-bridged cations: preparation and hydride reduction of [(η5-C5H5)(L2Ru(μ-CN)ML′25-C5H5)]PF6 [L2, L′2 = (PPh3)2, Ph2PCH2CH2PPh2; M = Ru or Fe]. Formation of [Ru(η5-C5H5) (PPh3)H3] and X-ray crystal structure of 2-[1,2-bis (diphenyl-phosphino)ethane]-μ-cyano-1,2-bis(η5-cyclopentadienyl)-1,1-bis(trip henylphosphine)diruthenium(II,II). J Chem Soc Dalton Trans: Inorg Chem, 1985, 7: 1479–1486

    Article  Google Scholar 

  71. Perkins GJ, Bruce MI, Skelton BW, White AH. A new precursor for organo-osmium complexes. Inorg Chim Acta, 2006, 359: 2644–2649

    Article  CAS  Google Scholar 

  72. Bruce MI, Humphrey MG, Swincer AG, Wallis RC. Cyclopentadienylruthenium and -osmium chemistry. XXIII. Synthesis and reactions of some hydrido complexes containing ruthenium or osmium and related chemistry. Aust J Chem, 1984, 37: 1747–1755

    Article  CAS  Google Scholar 

  73. Lou Y, Chang J, Jorgensen J, Lemal DM. Octachloroazulene. J Am Chem Soc, 2002, 124: 15302–15307

    Article  CAS  Google Scholar 

  74. Breslow R, Posner J. Diphenylcyclopropenone. Org Syn, 1967, 47: 62–64

    Article  Google Scholar 

  75. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  76. Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett, 1989, 157: 200–206

    Article  CAS  Google Scholar 

  77. Lee C, Yang W, Parr G. Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  78. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem, 1994, 98: 11623–11627

    Article  CAS  Google Scholar 

  79. Haeusermann U, Dolg M, Stoll H, Preuß H, Schwerdtfeger P, Pitzer RM. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials: all-electron and pseudopotential benchmark calculations for Hg, HgH and their cations. Mol Phys, 1993, 78: 1211–1224

    Article  Google Scholar 

  80. Kuechle W, Dolg M, Stoll H, Preuss H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys, 1994, 100: 7535–7542

    Article  CAS  Google Scholar 

  81. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P. The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for In pseudopotentials in calculations for spectroscopic constants of InH, InF, InCl. J Chem Phys, 1996, 105: 1052–1059

    Article  CAS  Google Scholar 

  82. Hollwarth A, Bohme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al-Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett, 1993, 208: 237–240

    Article  Google Scholar 

  83. Frisch MJ. Gaussian 03, revision B05; Gaussian, Inc.: Pittsburgh, PA, 2003

    Google Scholar 

  84. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  85. Safronov SV, Sheloumov AM, Kreindlin AZ, Kamyshova AA, Dolgushin FM, Smolyakov AF, Petrovskii PV, Ezernitskaya MG, Koridzem AA. P,C,P-pincer complexes of ruthenium based on ruthenocene and pentamethylruthenocene. Russ Chem Bull, 2010, 59: 1740–1744

    Article  CAS  Google Scholar 

  86. Kuklin SA, Dolgushin FM, Petrovskii PV, Koridze AA. Synthesis and comparative X-ray diffraction study of first ruthenocene-based pincer palladium complexes, PdCl[{2,5-(But 2PCH2)2C5H2}Ru(Cp′)] (Cp′ = C5H5 or C5Me5). Russ Chem Bull, 2006, 55: 1950–1955

    Article  CAS  Google Scholar 

  87. Tse SKS, Guo T, Sung HHY, Williams ID, Lin Z, Jia G. Synthesis of monosubstituted cyclopentadienyl ruthenium complexes from the reactions of 6-substituted fulvenes with RuHCl(PPh3)3. Organometallics, 2009, 28: 5529–5535

    Article  CAS  Google Scholar 

  88. Rowland RS, Taylor R. Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem, 1996, 100: 7384–7391

    Article  CAS  Google Scholar 

  89. Bondi A. Van der Waals volumes and radii. J Phys Chem, 1964, 68: 441–451

    Article  CAS  Google Scholar 

  90. Klein R. Modified van der Waals atomic radii for hydrogen bonding based on electron density topology. Chem Phys Lett, 2006, 425: 128–133

    Article  CAS  Google Scholar 

  91. Filippov OA, Belkova NV, Epstein LM, Lledos A, Shubina ES. Directionality of dihydrogen bonds: the role of transition metal atoms. Chem Phys Chem, 2012, 13: 2677–2687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ian Duncan Williams, ZhenYang Lin or GuoChen Jia.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

JIA GuoChen received his BSc degree from Wuhan University in 1983. He completed his PhD degree in 1989 from The Ohio State University with the supervision of Professors Devon Meek and Andrew Wojcicki. After carrying out postdoctoral work with Professor Robert H. Morris at University of Toronto and with Professor Richard J. Puddephatt at the University of Western Ontario, he joined the Hong Kong University of Science and Technology in 1992 as an assistant professor. He was promoted to an Associate Professor in 1998, and to a full professor in 2005. He is now a chair professor of chemistry at the Hong Kong University of Science and Technology. His research interest is in the areas of inorganic, organometallic chemistry and homogeneous catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, W., Tse, S.K.S., Lee, K.H. et al. Synthesis and characterization of MH⋯HOR dihydrogen bonded ruthenium and osmium complexes (η5-C5H4CH2OH)MH(PPh3)2 (M = Ru, Os). Sci. China Chem. 57, 1079–1089 (2014). https://doi.org/10.1007/s11426-014-5143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5143-6

Keywords

Navigation