Science China Chemistry

, Volume 57, Issue 9, pp 1199–1210 | Cite as

Chemical interactions between silver nanoparticles and thiols: a comparison of mercaptohexanol against cysteine

  • Her Shuang Toh
  • Christopher Batchelor-McAuley
  • Kristina Tschulik
  • Richard G. Compton


The interaction between citrate capped silver nanoparticles and two different thiols, mercaptohexanol (MH) and cysteine, was investigated. The thiols interacted with silver nanoparticles in a significantly contrasting manner. With MH, a sparingly soluble silver(I) thiolate complex AgSRm (Rm = −(CH2)6OH) was formed on the silver nanoparticle surface. Cyclic voltammograms and UV-vis spectra were used to infer that the AgSRm complex on the nanoparticle surface undergoes a phase transition to give a mixture of AgSRm and Ag2S-like complexes. In contrast, when silver nanoparticles were exposed to cysteine, the citrate capping agent on the silver nanoparticles was replaced by cysteine to give cysteine capped nanoparticles. As cysteine capped nanoparticles form, the electrochemical data displayed a decrease in oxidative peak charge but the UV-vis spectra showed a constant signal. Therefore, cysteine capped nanoparticles were suggested to have either inactivated the silver surface or else promoted detachment from the electrode surface.


silver nanoparticles interaction thiol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2014_5141_MOESM1_ESM.pdf (852 kb)
Supplementary material, approximately 852 KB.


  1. 1.
    Riedel S, Kaupp M. The highest oxidation states of the transition metal elements. Coordin Chem Rev, 2009, 253: 606–624CrossRefGoogle Scholar
  2. 2.
    Lilienfeld S, White CE. A Study of the reaction between hydrogen sulfide and silver. J Am Chem Soc, 1930, 52: 885–892CrossRefGoogle Scholar
  3. 3.
    Graedel TE, Franey JP, Gualtieri GJ, Kammlott GW, Malm DL. On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS. Corros Sci, 1985, 25: 1163–1180CrossRefGoogle Scholar
  4. 4.
    Sinclair JD. Tarnishing of silver by organic sulfur vapors: rates and film characteristics. J Electrochem Soc, 1982, 129: 33CrossRefGoogle Scholar
  5. 5.
    Bell RA, Kramer JR. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem, 1999, 18: 9–22Google Scholar
  6. 6.
    Dance IG, Fisher KJ, Banda RMH, Scudder ML. Layered structure of crystalline compounds Agsr. Inorg Chem, 1991, 30: 183–187CrossRefGoogle Scholar
  7. 7.
    Andersson L-O. Study of some silver-thiol complexes and polymers: Stoichiometry and optical effects. J Polym Sci A1, 1972, 10: 1963–1973CrossRefGoogle Scholar
  8. 8.
    Musante C, White JC. Toxicity of silver and copper to cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol, 2012, 27: 510–517CrossRefGoogle Scholar
  9. 9.
    Batchelor-McAuley C, Tschulik K, Neumann CCM, Laborda E, Compton RG. Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. Int J Electrochem Sci, 2014, 9: 1132–1138Google Scholar
  10. 10.
    Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanich N, Chailapakul O. Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay. Talanta, 2011, 85: 870–876CrossRefGoogle Scholar
  11. 11.
    Kunkalekar RK, Naik MM, Dubey SK, Salker AV. Antibacterial activity of silver-doped manganese dioxide nanoparticles on multi-drug-resistant bacteria. J Chem Tech Biotechnol, 2013, 88: 873–877CrossRefGoogle Scholar
  12. 12.
    Park Y, Noh HJ, Han L, Kim H-S, Kim Y-J, Choi JS, Kim C-K, Kim YS, Cho S. Artemisia capillaris extracts as a green factory for the synthesis of silver nanoparticles with antibacterial activities. J Nanosci Nanotechnol, 2012, 12: 7087–7095CrossRefGoogle Scholar
  13. 13.
    Sureshkumar M, Siswanto DY, Lee C-K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem, 2010, 20: 6948CrossRefGoogle Scholar
  14. 14.
    Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res, 2010, 12: 1531–1551CrossRefGoogle Scholar
  15. 15.
    Pradhan N, Pal A, Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloid Surface A, 2002, 196: 247–257CrossRefGoogle Scholar
  16. 16.
    Esumi K, Isono R, Yoshimura T. Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir, 2004, 20: 237–243CrossRefGoogle Scholar
  17. 17.
    Mitsudome T, Arita S, Mori H, Mizugaki T, Jitsukawa K, Kaneda K. Supported silver-nanoparticle-catalyzed highly efficient aqueous oxidation of phenylsilanes to silanols. Angew Chem, 2008, 120: 8056–8058CrossRefGoogle Scholar
  18. 18.
    Teo WZ, Pumera M. Fate of silver nanoparticles in natural waters; integrative use of conventional and electrochemical analytical techniques. RSC Adv, 2014, 4: 5006CrossRefGoogle Scholar
  19. 19.
    Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol, 2012, 46: 6900–6914CrossRefGoogle Scholar
  20. 20.
    Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem-US, 1982, 86: 3391–3395CrossRefGoogle Scholar
  21. 21.
    Shang L, Dong S. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron, 2009, 24: 1569–1573CrossRefGoogle Scholar
  22. 22.
    Chen S, Gao H, Shen W, Lu C, Yuan Q. Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensor Actuat B, 2014, 190: 673–678CrossRefGoogle Scholar
  23. 23.
    Tschulik K, Palgrave RG, Batchelor-McAuley C, Compton RG. “Sticky electrodes” for the detection of silver nanoparticles. Nanotechnology, 2013, 24: 295502CrossRefGoogle Scholar
  24. 24.
    Zhu J, Song X, Gao L, Li Z, Liu Z, Ding S, Zou S, He Y. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Biosens Bioelectron, 2014, 53: 71–75CrossRefGoogle Scholar
  25. 25.
    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect, 2010, 118: 407–413CrossRefGoogle Scholar
  26. 26.
    AshaRani PV, Low GKM, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3: 279–290CrossRefGoogle Scholar
  27. 27.
    Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol, 2008, 20: 575–583CrossRefGoogle Scholar
  28. 28.
    Ansar SM, Perera GS, Gomez P, Salomon G, Vasquez ES, Chu IW, Zou S, Pittman CU, Walters KB, Zhang D. Mechanistic study of continuous reactive aromatic organothiol adsorption onto silver nanoparticles. J Phys Chem C, 2013, 117: 27146–27154CrossRefGoogle Scholar
  29. 29.
    Andrieux-Ledier A, Tremblay B, Courty A. Stability of self-ordered thiol-coated silver nanoparticles: oxidative environment effects. Langmuir, 2013, 29: 13140–13145CrossRefGoogle Scholar
  30. 30.
    Battocchio C, Meneghini C, Fratoddi I, Venditti I, Russo MV, Aquilanti G, Maurizio C, Bondino F, Matassa R, Rossi M, Mobilio S, Polzonetti G. Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure. J Phys Chem C, 2012, 116: 19571–19578CrossRefGoogle Scholar
  31. 31.
    Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr. Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol, 2013, 47: 13440–13448CrossRefGoogle Scholar
  32. 32.
    Kim B, Park CS, Murayama M, Hochella MF. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol, 2010, 44: 7509–7514CrossRefGoogle Scholar
  33. 33.
    Zhang N, Qu F, Luo HQ, Li NB. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens Bioelectron, 2013, 42: 214–218CrossRefGoogle Scholar
  34. 34.
    Csapo E, Patakfalvi R, Hornok V, Toth LT, Sipos A, Szalai A, Csete M, Dekany I. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloid Surface B, 2012, 98: 43–49CrossRefGoogle Scholar
  35. 35.
    Li H, Cui Z, Han C. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensor Actuat B: Chem, 2009, 143: 87–92CrossRefGoogle Scholar
  36. 36.
    Lyons J, Rauh-Pfeiffer A, Yu YM, Lu XM, Zurakowski D, Tompkins RG, Ajami AM, Young VR, Castillo L. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc Natl Acad Sci USA, 2000, 97: 5071–5076CrossRefGoogle Scholar
  37. 37.
    Patterson RA, Lamb DJ, Leake DS. Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Atherosclerosis, 2003, 169: 87–94CrossRefGoogle Scholar
  38. 38.
    Wan Y, Guo Z, Jiang X, Fang K, Lu X, Zhang Y, Gu N. Quasi-spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J Colloid Interface Sci, 2013, 394: 263–268CrossRefGoogle Scholar
  39. 39.
    Toh HS, Batchelor-McAuley C, Tschulik K, Damm C, Compton RG. A proof-of-concept — Using pre-created nucleation centres to improve the limit of detection in anodic stripping voltammetry. Sensor Actuat B: Chem, 2014, 193: 315–319CrossRefGoogle Scholar
  40. 40.
    Lees JC, Ellison J, Batchelor-McAuley C, Tschulik K, Damm C, Omanovic D, Compton RG. Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles. Chem-PhysChem, 2013, 14: 3895–3897Google Scholar
  41. 41.
    Haynes WM, Lide DR, Bruno TJ. CRC Handbook of Chemistry and Physics 2012–2013; 93rd ed. Florida: Taylor & Francis Group, 2012Google Scholar
  42. 42.
    Toh HS, Batchelor-McAuley C, Tschulik K, Compton RG. Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis. Analyst, 2013, 138: 4292–4297CrossRefGoogle Scholar
  43. 43.
    Henglein A, Mulvaney P, Linnert T. Chemistry of Ag n aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discussions, 1991, 92: 31CrossRefGoogle Scholar
  44. 44.
    Evanoff DD, Chumanov G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B, 2004, 108: 13957–13962CrossRefGoogle Scholar
  45. 45.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys, 2002, 116: 6755–6759CrossRefGoogle Scholar
  46. 46.
    Mulvaney P, Giersig M, Henglein A. Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J Phys Chem, 1993, 97: 7061–7064CrossRefGoogle Scholar
  47. 47.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 2003, 107: 668–677CrossRefGoogle Scholar
  48. 48.
    Kuzma A, Weis M, Flickyngerova S, Jakabovic J, Satka A, Dobrocka E, Chlpik J, Cirak J, Donoval M, Telek P, Uherek F, Donoval D. Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J Appl Phys, 2012, 112: 103531CrossRefGoogle Scholar
  49. 49.
    Krzewska S, PodsiadŁy H. Complexes of Ag(I) with ligands containing sulphur donor atoms. Polyhedron, 1986, 5: 937–944CrossRefGoogle Scholar
  50. 50.
    Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol, 2011, 45: 5260–5266CrossRefGoogle Scholar
  51. 51.
    Toh HS, Batchelor-McAuley C, Tschulik K, Uhlemann M, Crossley A, Compton RG. The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale, 2013, 5: 4884–4893CrossRefGoogle Scholar
  52. 52.
    Davies TJ, Compton RG. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem, 2005, 585: 63–82CrossRefGoogle Scholar
  53. 53.
    Kätelhön E, Cheng W, Batchelor-McAuley C, Tschulik K, Compton RG. Nano-impact experiments are highly sensitive to the presence of adsorbed species on electrode surfaces. ChemElectroChem, 2014, doi: 10.1002/celc.201402014Google Scholar
  54. 54.
    Ward Jones SE, Campbell FW, Baron R, Xiao L, Compton RG. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: theory and experiment. J Phys Chem C, 2008, 112: 17820–17827CrossRefGoogle Scholar
  55. 55.
    Evanoff DD Jr, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 2005, 6: 1221–1231CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Her Shuang Toh
    • 1
  • Christopher Batchelor-McAuley
    • 1
  • Kristina Tschulik
    • 1
  • Richard G. Compton
    • 1
  1. 1.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations