Skip to main content
Log in

Cyclocopolymerization of 1,6-heptadiene with ethylene by half-sandwich scandium catalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The cyclocopolymerization of 1,6-heptadiene (HPD) with ethylene (E) by a series of half-sandwich scandium alkyl catalysts bearing various auxiliary ligands have been examined. Significant ligand influence on the copolymerization activity and selectivity was observed. In combination with one equivalent of [Ph3C][B(C6F5)4], the half-sandwich scandium dialkyl complexes bearing a Lewis base THF (1) or an NHC side arm (2) yielded the copolymer products together with cross-linked polymers in the copolymerization of HPD with ethylene. In contrast, the THF-free complexes Cp’Sc(CH2C6H4NMe2-o)2 (3: Cp’ = C5H5; 4: Cp’ = C5Me4SiMe3) and the phosphine oxide side-arm containing complex (C5Me4SiMe2CH2(O)PPh2)Sc(CH2SiMe3)2 (5) showed excellent activity and selectivity for the cyclocopolymerization reaction, without giving cross-linked products. The 1H and 13C NMR analyses revealed that the resulting copolymers consist of E-E sequences and six-membered ring methylene-1,3-cyclohexane (MCH) and five-membered ring ethylene-1,2-cyclopentane (ECP) units. The HPD content in the copolymer products could be easily controlled by changing the feeding amount of HPD under 1 atm of ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selected reviews on cyclic olefin copolymers: Li X, Hou Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord Chem Rev, 2008, 252: 1842–1869

    Article  CAS  Google Scholar 

  2. Coates GW. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev, 2000, 100: 1223–1252

    Article  CAS  Google Scholar 

  3. Ballesteros OR, Venditto V, Auriemma F, Guerra G. Thermal and structural characterization of poly(methylene-l,3-cyclopentane) samples of different microstructures. Macromolecules, 1995, 28: 2383–2388

    Article  Google Scholar 

  4. Naga N, Tsubooka M, Suehiro S, Imanishi Y. Crystalline structure and thermal property of polyethylene and isotactic polypropylene containing cyclopentane units in the main chain. Macromolecules, 2002, 35: 3041–3047

    Article  CAS  Google Scholar 

  5. Naga N, Tsubooka M, Sone M, Tashiro K, Imanishi Y. Crystalline structure of polyethylene containing 1,2- or 1,3-disubstituted cyclopentane units in the main chain. Macromolecules, 2002, 35: 9999–10003

    Article  CAS  Google Scholar 

  6. Yoon J, Mathers RT, Coates GW, Thomas EL. Optically transparent and high molecular weight polyolefin block copolymers toward self-assembled photonic band gap materials. Macromolecules, 2006, 39: 1913–1919

    Article  CAS  Google Scholar 

  7. Naga N, Yabe T, Sawaguchi A, Sone M, Noguchi K, Murase S. Liquid crystalline features in a polyolefin of poly(methylene-1,3-cyclopentane). Macromolecules, 2008, 41: 7448–7452

    Article  CAS  Google Scholar 

  8. Naga N, Himura H, Sone M. Liquid crystalline features of optically active poly(methylene-1,3-cyclopentane). Macromolecules, 2009, 42: 7631–7633

    Article  CAS  Google Scholar 

  9. For the homopolymerization of 1,5-hexadiene, see: Marvel CS, Stille JK. Intermolecular-intramolecular polymerization of α-diolefins by metal alkyl coordination catalysts. J Am Chem Soc, 1958, 80: 1740–1744

    Article  CAS  Google Scholar 

  10. Resconi L, Waymouth RM. Diastereoselectivity in the homogeneous cyclopolymerization of 1,5-hexadiene. J Am Chem Soc, 1990, 112: 4953–4954

    Article  CAS  Google Scholar 

  11. Mogstad AL, Waymouth RM. Chain transfer to aluminum in the homogeneous cyclopolymerization of 1,5-hexadiene. Macromolecules, 1992, 25: 2282–2284

    Article  CAS  Google Scholar 

  12. Mitani M, Oouchi K, Hayakawa M, Yamada T, Mukaiyama T. Stereoselective cyclopolymerization of 1,5-hexadiene using novel bis(ferrocenyl) zirconocene catalyst. Chem Lett, 1995, 905–906

    Google Scholar 

  13. Coates GW, Waymouth RM. Enantioselective cyclopolymerization: optically active poly(methylene-1,3-cyclopentane. J Am Chem Soc, 1991, 113: 6270–6271

    Article  CAS  Google Scholar 

  14. Coates GW, Waymouth RM. Enantioselective cyclopolymerization: optically active poly(methylene-1,3-cyclopentane). Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J Am Chem Soc, 1993, 115: 91–98

    Article  CAS  Google Scholar 

  15. Yeori A, Goldberg I, Shuster M, Kol M. Diastereomerically-specific zirconium complexes of chiral salan ligands: isospecific polymerization of 1-hexene and 4-methyl-1-pentene and cyclopolymerization of 1,5-hexadiene. J Am Chem Soc, 2006, 128: 13062–13063

    Article  CAS  Google Scholar 

  16. Yeori A, Goldberg I, Kol M. Cyclopolymerization of 1,5-hexadiene by enantiomerically-pure zirconium salan complexes. Polymer optical activity reveals α-olefin face preference. Macromolecules, 2007, 40: 8521–8523

    Article  CAS  Google Scholar 

  17. Jayaratne KC, Keaton RJ, Henningsen DA, Sita LR. Living Ziegler-Natta cyclopolymerization of nonconjugated dienes: new classes of microphase-separated polyolefin block copolymers via a tandem polymerization/cyclopolymerization strategy J Am Chem Soc, 2000, 122: 10490–10491

    Article  CAS  Google Scholar 

  18. Nomura K, Hatanaka Y, Okumura H, Fujiki M, Hasegawa K. Polymerization of 1,5-hexadiene by the nonbridged half-titanocene complex-MAO catalyst system: remarkable difference in the selectivity of repeated 1,2-insertion. Macromolecules, 2004, 37: 1693–1695

    Article  CAS  Google Scholar 

  19. Naga N, Imanishi Y. Copolymerization of ethylene and 1,5-hexadiene with zirconocene catalysts. Macromol Chem Phys, 2002, 203: 771–777

    Article  CAS  Google Scholar 

  20. Kim I, Shin YS, Lee J, Cho NJ, Won M. Copolymerization of ethylene and 1,5-hexadiene by stereospecific metallocenes in the presence of Al(iBu)3/[Ph3C][B(C6F5)4]. Polymer, 2001, 42: 9393–9403

    Article  CAS  Google Scholar 

  21. Choo TN, Waymouth RM. Cyclocopolymerization: a mechanistic probe for dual-site alternating copolymerization of ethylene and α-olefins. J Am Chem Soc, 2002, 124: 4188–4189

    Article  CAS  Google Scholar 

  22. Sernetz FG, Mulhaupt R, Waymouth RM. Homo-, co- and terpolymerization of 1,5-hexadiene using a methylalumoxane activated mono-Cp-amido-complex. Polym Bulletin, 1997, 38: 141–148

    Article  CAS  Google Scholar 

  23. Zhang W, Wei J, Sita LR. Living coordinative chain-transfer polymerization and copolymerization of ethene, α-olefins, and α,ω-nonconjugated dienes using dialkylzinc as “surrogate” chain-growth sites. Macromolecules, 2008, 41: 7829–7833

    Article  CAS  Google Scholar 

  24. Guo F, Nishiura M, Koshino H, Hou Z. Scandium-catalyzed cyclocopolymerization of 1,5-hexadiene with styrene and ethylene: efficient synthesis of cyclopolyolefins containing syndiotactic styrene-styrene sequences and methylene-1,3-cyclopentane units. Macromolecules, 2011, 44: 6335–6344

    Article  CAS  Google Scholar 

  25. Takeuchi D, Matsuura R, Osakada K. Copolymerization of hepta-1,6-diene with ethylene catalyzed by cobalt complexes. Macromol Rapid Commun, 2008, 29: 1932–1936

    Article  CAS  Google Scholar 

  26. Takeuchi D, Chiba Y, Takano S, Osakada K. Double-decker-type dinuclear nickel catalyst for olefin polymerization: efficient incorporation of functional co-monomers. Angew Chem Int Ed, 2013, 52, 12536–12540

    Article  CAS  Google Scholar 

  27. Guo F, Nishiura M, Koshino H, Hou Z. Cycloterpolymerization of 1,6-heptadiene with ethylene and styrene catalyzed by a THF-free half-sandwich scandium complex. Macromolecules, 2011, 44: 2400–2403

    Article  CAS  Google Scholar 

  28. Guo F, Nishiura M, Li Y, Hou Z. Copolymerization of isoprene and nonconjugated α,ω-dienes by half-sandwich scandium catalysts with and without a coordinative side arm. Chem Asian J, 2013, 8: 2471–2482

    Article  CAS  Google Scholar 

  29. For the homopolymerization of 1,6-heptadiene, see: Coates GW, Waymouth RM. Chiral polymers via cyclopolymerization. J Mol Catal, 1992, 76: 189–194

    Article  CAS  Google Scholar 

  30. Hustad PD, Tian J, Coates GW. Mechanism of propylene insertion using bis(phenoxyimine)-based titanium catalysts: an unusual secondary insertion of propylene in a group IV catalyst system. J Am Chem Soc, 2002, 124: 3614–3621

    Article  CAS  Google Scholar 

  31. Takeuchi D, Matsuura R, Park S, Osakada K. Cyclopolymerization of 1,6-heptadienes catalyzed by iron and cobalt complexes: synthesis of polymers with trans- or cis-fused 1,2-cyclopentanediyl groups depending on the catalyst. J Am Chem Soc, 2007, 129: 7002–7003

    Article  CAS  Google Scholar 

  32. Edson JB, Coates GW. Cyclopolymerization of nonconjugated dienes with a tridentate phenoxyamine hafnium complex supported by an sp3-C donor: isotactic enchainment and diastereoselective cis-ring closure. Macromol Rapid Commun, 2009, 30: 1900–1906

    Article  CAS  Google Scholar 

  33. Crawford KE, Sita LR. Stereoengineering of poly(1,3-methylenecyclohexane) via two-state living coordination polymerization of 1,6-heptadiene. J Am Chem Soc, 2013, 135: 8778–8781

    Article  CAS  Google Scholar 

  34. Luo Y, Baldamus J, Hou Z. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization: unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers. J Am Chem Soc, 2004, 126: 13910–13911

    Article  CAS  Google Scholar 

  35. Li X, Nishiura M, Hu L, Mori K, Hou Z. Alternating and random copolymerization of isoprene and ethylene catalyzed by cationic half-sandwich scandium alkyls. J Am Chem Soc, 2009, 131: 13870–13882

    Article  CAS  Google Scholar 

  36. Li X, Nishiura M, Mori K, Mashiko T, Hou Z. Cationic scandium aminobenzyl complexes. synthesis, structure and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene. Chem Commun, 2007, 4137–4139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoMin Hou.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

HOU ZhaoMin was born in Shandong Province, China, in 1961. He received his Ph.D. from Kyushu University in 1989 and then joined RIKEN, where he has been Chief Scientist and Director of Organometallic Chemistry Laboratory since 2002. He is now concurrently appointed to Deputy Director of RIKEN Center for Sustainable Resource Science and Guest Professor at Dalian University of Technology. His research focuses on organometallic chemistry and molecular catalysis. Recent awards include JSPS Prize (2007), the Chemical Society of Japan Award for Creative Work (2007), Mitsui Chemicals Catalysis Science Award (2007), Commendation for Science and Technology by the Minister of MEXT of Japan: the Prizes for Science and Technology (2008), the Rare Earth Society of Japan Award (2009), and the Award of the Society of Polymer Science, Japan (2012)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Nishiura, M., Li, Y. et al. Cyclocopolymerization of 1,6-heptadiene with ethylene by half-sandwich scandium catalysts. Sci. China Chem. 57, 1150–1156 (2014). https://doi.org/10.1007/s11426-014-5132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5132-9

Keywords

Navigation