Skip to main content
Log in

Synthesis of carborane-fused cyclobutenes and cyclobutanes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transmetalation of carborane-fused zirconacycles to Cu(II) induces the C-C coupling reaction to form four-membered rings. This serves as a new efficient and general methodology for the generation of a series of carborane-fused cyclobutenes and cyclobutanes. A reaction mechanism involving transmetalation to Cu(II) and reductive elimination is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schore NE. Transition metal-mediated cycloaddition reactions of alkynes in organic synthesis. Chem Rev, 1988, 88: 1081–1119

    Article  CAS  Google Scholar 

  2. Trost BM. The atom economy—A search for synthetic efficiency. Science, 1991, 254: 1471–1477

    Article  CAS  Google Scholar 

  3. Lautens M, Klute W, Tam W. Transition metal-mediated cycloaddition reactions. Chem Rev, 1996, 96: 49–92

    Article  CAS  Google Scholar 

  4. Nakamura I, Yamamoto Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem Rev, 2004, 104: 2127–2198

    Article  CAS  Google Scholar 

  5. Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V. Nickel-catalyzed cross-couplings involving carbonoxygen bonds. Chem Rev, 2011, 111: 1346–1416

    Article  CAS  Google Scholar 

  6. Liu C, Zhang H, Shi W, Lei A. Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev, 2011, 111: 1780–1824

    Article  CAS  Google Scholar 

  7. Wang L, He W, Yu Z. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem Soc Rev, 2013, 42: 599–621

    Article  CAS  Google Scholar 

  8. Hawthorne MF. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew Chem Int Ed, 1993, 32: 950–984

    Article  Google Scholar 

  9. Armstrong AF, Valliant JF. The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy. Dalton Trans, 2007, 4240–4251

    Google Scholar 

  10. Issa F, Kassiou M, Rendina LM. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem Rev, 2011, 111: 5701–5722

    Article  CAS  Google Scholar 

  11. Jude H, Disteldorf H, Fischer S, Wedge T, Hawkridge AM, Arif AM, Hawthorne MF, Muddiman DC, Stang PJ. Coordination-driven self-assemblies with a carborane backbone. J Am Chem Soc, 2005, 127: 12131–12139

    Article  CAS  Google Scholar 

  12. Dash BP, Satapathy R, Gaillard ER, Maguire JA, Hosmane NS. Synthesis and properties of carborane-appended C 3-symmetrical extended π systems. J Am Chem Soc, 2010, 132: 6578–6587

    Article  CAS  Google Scholar 

  13. Yao ZJ, Jin GX. Transition metal complexes based on carboranyl ligands containing N, P, and S donors: synthesis, reactivity and applications. Coord Chem Rev, 2013, 257: 2522–2535

    Article  CAS  Google Scholar 

  14. Meng X, Wang F, Jin GX. Construction of M-M bonds in late transition metal complexes. Coord Chem Rev, 2010, 254: 1260–1272

    Article  CAS  Google Scholar 

  15. Yao ZJ, Yu WB, Lin YJ, Huang SL, Li ZH, Jin GX. Iridium-mediated regioselective B-H/C-H activation of carborane cage: a facile synthetic route to metallacycles with a carborane backbone. J Am Chem Soc, 2014, 136: 2825–2832

    Article  CAS  Google Scholar 

  16. Yao ZJ, Jin GX. Synthesis, reactivity, and structural transformation of mono- and binuclear carboranylamidinate-based 3d metal complexes and metallacarborane derivatives. Organometallics, 2012, 31: 1767–1774

    Article  CAS  Google Scholar 

  17. Wee KR, Cho YJ, Jeong S, Kwon S, Lee JD, Suh IH, Kang SO. Carborane-based optoelectronically active organic molecules: wide band gap host materials for blue phosphorescence. J Am Chem Soc, 2012, 134: 17982–17990

    Article  CAS  Google Scholar 

  18. Cioran AM, Musteti AD, Teixidor F, Krpetić Z, Prior IA, He Q, Kiely CJ, Brust M, Vinñas C. Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity. J Am Chem Soc, 2012, 134: 212–221

    Article  CAS  Google Scholar 

  19. Visbal R, Ospino I, López-de-Luzuriaga JM, Laguna A, Gimeno MC. N-heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold(I) complexes with spectacular quantum yields. J Am Chem Soc, 2013, 135: 4712–4715

    Article  CAS  Google Scholar 

  20. Shi C, Sun H, Tang X, Lv W, Yan H, Zhao Q, Wang J, Huang W. Variable photophysical properties of phosphorescent iridium(III) complexes triggered by closo- and nido-carborane substitution. Angew Chem Int Ed, 2013, 52: 13434–13438

    Article  CAS  Google Scholar 

  21. Shi C, Sun H, Jiang Q, Zhao Q, Wang J, Huang W, Yan H. Carborane tuning of photophysical properties of phosphorescent iridium(III) complexes. Chem Commun, 2013, 49: 4746–4748

    Article  CAS  Google Scholar 

  22. Zhu L, Lv W, Liu S, Yan H, Zhao Q, Huang W. Carborane enhanced two-photon absorption of tribranched fluorophores for fluorescence microscopy imaging. Chem Commun, 2013, 49: 10638–10640

    Article  CAS  Google Scholar 

  23. Grimes RM. Carboranes. 2nd edn. Amsterdam: Academic Press, 2011

    Google Scholar 

  24. Hosmane NS, Maguire JA. Metallacarboranes of d- and f-block metals. In: Crabtree RH, Mingos DMP, Eds. Comprehensive Organometallic Chemistry III. Oxford: Elsevier, 2007, Vol. 3, Chapter 5.

    Google Scholar 

  25. Xie Z. Advances in the chemistry of metallacarboranes of f-block elements. Coord Chem Rev, 2002, 231: 23–46

    Article  CAS  Google Scholar 

  26. Xie Z. Cyclopentadienyl-carboranyl hybrid compounds: a new class of versatile ligands for organometallic chemistry. Acc Chem Res, 2003, 36: 1–9

    Article  CAS  Google Scholar 

  27. Xie Z. Group 4 metallocenes incorporating constrained-geometry carboranyl ligands. Coord Chem Rev, 2006, 250: 259–272

    Article  CAS  Google Scholar 

  28. Deng L, Xie Z. Advances in the chemistry of carboranes and metallacarboranes with more than 12 vertices. Coord Chem Rev, 2007, 251: 2452–2476

    Article  CAS  Google Scholar 

  29. Qiu Z, Ren S, Xie Z. Transition metal-carboryne complexes: synthesis, bonding, and reactivity. Acc Chem Res, 2011, 44: 299–309

    Article  CAS  Google Scholar 

  30. Deng L, Chan HS, Xie Z. Synthesis, structure, and reactivity of a zirconocene-carboryne precursor. J Am Chem Soc, 2005, 127: 13774–13775

    Article  CAS  Google Scholar 

  31. Deng L, Chan HS, Xie Z. Nickel-mediated regioselective [2+2+2] cycloaddition of carboryne with alkynes. J Am Chem Soc, 2006, 128: 7728–7729

    Article  CAS  Google Scholar 

  32. Qiu Z, Xie Z. Nickel-mediated coupling reactions of carboryne with alkenes: a synthetic route to alkenylcarboranes. Angew Chem Int Ed, 2008, 47: 6572–6575

    Article  CAS  Google Scholar 

  33. Qiu Z, Xie Z. Nickel-mediated three-component cycloaddition reaction of carboryne, alkenes, and alkynes. J Am Chem Soc, 2009, 131: 2084–2085

    Article  CAS  Google Scholar 

  34. Qiu Z, Wang SR, Xie Z. Nickel-catalyzed regioselective [2+2+2] cycloaddition of carboryne with alkynes. Angew Chem Int Ed, 2010, 49: 4649–4652

    Article  CAS  Google Scholar 

  35. Qiu Z, Xie Z. Palladium/nickel-cocatalyzed cycloaddition of 1,3-dehydro-o-carborane with alkynes. Facile synthesis of C,B-substituted carboranes. J Am Chem Soc, 2010, 132: 16085–16093

    Article  CAS  Google Scholar 

  36. Ren S, Chan HS, Xie Z. Reaction of zirconocene-carboryne precursor with alkynes: an efficient route to zirconacyclopentenes incorporating a carboranyl unit. Organometallics, 2009, 28: 4106–4114

    Article  CAS  Google Scholar 

  37. Ren S, Qiu Z, Xie Z. Reaction of zirconocene-carboryne with alkenes: synthesis and structure of zirconacyclopentanes with a carborane auxiliary. Organometallics, 2012, 31: 4435–4441

    Article  CAS  Google Scholar 

  38. Ren S, Qiu Z, Xie Z. Synthesis of neutral group 4 metal-carboryne complexes and their reactivity toward unsaturated molecules. Organometallics, 2013, 32: 4292–4300

    Article  CAS  Google Scholar 

  39. Ren S, Qiu Z, Xie Z. Transition metal promoted or catalyzed exo-cyclic alkyne insertion via zirconacyclopentene with carborane auxillary: formation of symmetric or unsymmetric benzocarboranes. J Am Chem Soc, 2012, 134: 3242–3254

    Article  CAS  Google Scholar 

  40. Ren S, Qiu Z, Xie Z. Three-component [2+2+2] cycloaddition of carboryne, unactivated alkene, and alkyne via zirconacyclopentane mediated by nickel: one-pot synthesis of dihydrobenzocarboranes. Angew Chem Int Ed, 2012, 51: 1010–1013

    Article  CAS  Google Scholar 

  41. Quan Y, Zhang J, Xie Z. Three-component [2+2+1] cross-cyclotri-merization of carboryne, unactivated alkene, and trimethylsilylalkyne co-mediated by Zr and Ni. J Am Chem Soc, 2013, 135: 18742–18745

    Article  CAS  Google Scholar 

  42. Marek I, Ed. Titanium and Zirconium in Organic Synthesis. Weinhein: Wiley-VCH, 2002.

    Google Scholar 

  43. Negishi E, Takahashi T. Patterns of stoichiometric and catalytic reactions of organozirconium and related complexes of synthetic interest. Acc Chem Res, 1994, 27: 124–130

    Article  CAS  Google Scholar 

  44. Negishi E. A quarter of a century of explorations in organozirconium chemistry. Dalton Trans, 2005, 827–848

    Google Scholar 

  45. Ren S, Chan HS, Xie Z. Synthesis, structure, and reactivity of zirconacyclopentene incorporating a carboranyl unit. J Am Chem Soc, 2009, 131: 3862–3863

    Article  CAS  Google Scholar 

  46. Lee T, Jeon J, Song KH, Jung I, Baik C, Park KM, Lee SS, Kang SO, Ko J. Generation and trapping reaction of an efficient 1,2-dehydrocarborane precursor, phenyl[o-(trimethylsilyl)carboranyl]iodonium acetate. Dalton Trans, 2004, 933–937

    Google Scholar 

  47. Ho DM, Cunningham RJ, Brewer JA, Bian N, Jones M Jr. Reaction of 1,2-dehydro-o-carborane with acetylenes. Synthesis and structure of a carborane analogue of benzocyclobutadiene. Inorg Chem, 1995, 34: 5274–5278

    Article  CAS  Google Scholar 

  48. Sheldrick GM. SADABS: program for empirical absorption correction of area detector data. Dissertation for the Doctoral Degree. Germany: University of Göttingen, 1996

    Google Scholar 

  49. Sheldrick GM. SHELXTL 5.10 for Windows NT: Structure Determination Software Programs. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997

    Google Scholar 

  50. L’Esperance RP, Li ZH, Van Engen D, Jones M Jr. New syntheses of 1,2-ethano-o-carborane and the structure of 9-chloro-1,2-ethano-o-carborane. Inorg Chem, 1989, 28: 1823–1826

    Article  Google Scholar 

  51. Allen FH. The Geometry of small rings. VI. Geometry and bonding in cyclobutane and cyclobutene. Acta Cryst, 1984, B40: 64–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShaoWu Wang or ZuoWei Xie.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

WANG ShaoWu received his BSc and MS degrees from Anhui Normal University in 1985 and 1992, respectively. After obtaining a PhD from The Chinese University of Hong Kong in 1999, he spent one year as a postdoctoral fellow at The Chinese University of Hong Kong. He then joined the faculty of the Anhui Normal University as a full professor of chemistry. He serves as the vice-president of the Anhui Normal University since June 2009, and has co-authored about 110 publications in peer-reviewed journals, 5 patents, and received two 2nd prize awards from the State Commission of Education and Anhui Province. His research interests include organolanthanide chemistry and organic synthesis.

XIE ZuoWei obtained a B.Sc. from Hangzhou University in 1983, a M.Sc. from Shanghai Institute of Organic Chemistry (SIOC) in 1986, and his Ph.D. in 1990, working in a joint program between SIOC and the Technische Universität Berlin under the co-supervision of Profs. Changtao Qian, Yaozeng Huang and Herbert Schumann. He is a Choh-Ming Li Professor of Chemistry in The Chinese University of Hong Kong, a member of Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis and the 2008 recipient of the State Natural Science Prize.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Ren, S., Qiu, Z. et al. Synthesis of carborane-fused cyclobutenes and cyclobutanes. Sci. China Chem. 57, 1157–1163 (2014). https://doi.org/10.1007/s11426-014-5112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5112-0

Keywords

Navigation