Skip to main content
Log in

Crescent aromatic oligothioamides as highly selective receptors for copper(II) ion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of crescent aromatic oligothioamides (4, 6, 8, 15, and 18) bearing different number of sulfur atoms were designed and synthesized via thionation of their corresponding aromatic oligoamides (3, 5, and 7) using Lawesson’s reagent. The X-ray structure of a trimeric analogue (13) revealed the presence of intramolecular three-center hydrogen bonds that are responsible for the rigidification of the molecular backbone. The extraction by these novel receptors toward some representative heavy metal cations (Zn2+, Cd2+, Co2+, Ni2+, Pb2+, and Cu2+) and alkali and alkaline earth metal cations (Li+, Na+, K+, Rb+, Cs+, Ca2+, and Sr2+) demonstrated high efficiency (83.5%–96.4%) and superior selectivity for Cu2+ over other selected metal cations. Particularly, the extractability was correlated to both the number of sulfur atoms and orientation of thiocarbonyl groups as revealed in the order: 6 > 4 > 18 > 15. This is in stark contrast to the oligoamides that only gave much lower extractability (5.9%–16.4%), suggestive of the importance of replacement of carbonyl oxygen atoms with sulfur atoms in the extraction of Cu2+. The complexation behavior of 4, 6, and 8 with Cu2+ was also examined by UV-Vis and NMR techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ. Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B, 2001, 4: 341–394

    Article  CAS  Google Scholar 

  2. Jung HS, Kwon PS, Lee JW, Kim J, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS. Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms and applications in living cells. J Am Chem Soc, 2009, 131: 2008–2012

    Article  CAS  Google Scholar 

  3. Sutariya PG, Pandya A, Lodha A, Menon SK. Fluorescence switch on-off-on receptor constructed of quinoline allied calix[4]arene for selective recognition of Cu2+ from blood serum and F-from industrial waste water. Analyst, 2013, 138: 2531–2535

    Article  CAS  Google Scholar 

  4. Xu YF, Lu F, Xu ZC, Cheng TY, Qian XH. Highly sensitive and selective ratiometric fluorescent copper sensors: different binding affinities modulated by three separate side chains of naphthalimide. Sci China Chem, 2009, 52: 771–779

    Article  CAS  Google Scholar 

  5. Wang MQ, Li K, Hou JT, Wu MY, Huang Z, Yu XQ. BINOL-based fluorescent sensor for recognition of Cu(II) and sulfide anion in water. J Org Chem, 2012, 77: 8350–8354

    Article  CAS  Google Scholar 

  6. Peng Y, Dong YM, Dong M, Wang YW. A selective, sensitive, colorimetric and fluorescence probe for relay recognition of fluoride and Cu(II) ions with “off-on-off” switching in ethanol-water solution. J Org Chem, 2012, 77: 9072–9080

    Article  CAS  Google Scholar 

  7. Liu ZP, Zhang CL, Wang XQ, He WJ, Guo ZJ. Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org Lett, 2012, 14: 4378–4381

    Article  CAS  Google Scholar 

  8. Zeng X, Wu C, Dong L, Mu L, Xue SF, Tao Z. A new tripodal rhodamine B derivative as a highly selective and sensitive fluorescence chemosensor for copper(II). Sci China Chem, 2009, 52: 523–528

    Article  CAS  Google Scholar 

  9. Maity D, Govindaraju T. Highly selective visible and near-IR sensing of Cu2+ based on thiourea-salicylaldehyde coordination in aqueous media. Chem Eur J, 2011, 17: 1410–1414

    Article  CAS  Google Scholar 

  10. Domaille DW, Que EL, Chang CJ. Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol, 2008, 4: 168–175

    Article  CAS  Google Scholar 

  11. Yu MX, Shi M, Chen ZG, Li FY, Li XX, Gao YH, Xu J, Yang H, Zhou ZG, Yi T, Huang CH. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in living cell imaging. Chem Eur J, 2008, 14: 6892–6900

    Article  CAS  Google Scholar 

  12. Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T. Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates: selective detection and fluorescence imaging in living cells. Chem Eur J, 2011, 17: 11152–11161

    Article  CAS  Google Scholar 

  13. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem Rev, 2001, 101: 3893–4011

    Article  CAS  Google Scholar 

  14. Gong B. Crescent oligoamides: from acyclic “macromolecules” to folding nanotubes. Chem Eur J, 2001, 7: 4336–4342

    Article  CAS  Google Scholar 

  15. Yang YA, Feng W, Hu JC, Zou SL, Gao RZ, Yamato K, Kline M, Cai ZH, Wang YB, Li YB, Yang YL, Yuan LH, Zeng XC, Gong B. Strong aggregation and directional assembly of aromatic oligoamide macrocycles. J Am Chem Soc, 2011, 133: 18590–18593

    Article  CAS  Google Scholar 

  16. Zhang DW, Zhao X, Hou JL, Li ZT. Aromatic amide foldamers: structures, properties, and functions. Chem Rev, 2012, 112: 5271–5316

    Article  CAS  Google Scholar 

  17. Gan Q, Li F, Li GP, Kauffmann B, Xiang JF, Huc I, Jiang H. Heteromeric double helix formation by cross-hybridization of chloro- and fluoro-substituted quinoline oligoamides. Chem Commun, 2010, 46: 297–299

    Article  CAS  Google Scholar 

  18. Ong WQ, Zhao HQ, Du ZY, Yeh JZY, Ren CL, Tan LZW, Zhang K, Zeng HQ. Computational prediction and experimental verification of pyridine-based helical oligoamides containing four repeating units per helical turn. Chem Commun, 2011, 47: 6416–6418

    Article  CAS  Google Scholar 

  19. Fu HL, Liu Y, Zeng HQ. Shape-persistent H-bonded macrocyclic aromatic pentamers. Chem Commun, 2013, 49: 4127–4144

    Article  CAS  Google Scholar 

  20. Saraogi I, Hamilton AD. Recent advances in the development of aryl-based foldamers. Chem Soc Rev, 2009, 38: 1726–1743

    Article  CAS  Google Scholar 

  21. Zou SL, He LT, Zhang J, He YZ, Yuan LH, Wu LX, Luo J, Wang YH, Feng W. Tunable mesogens based on shape-persistent aromatic oligoamides: from lamellar, columnar, to nematic liquid crystalline phase. Org Lett, 2012, 14: 3584–3587

    Article  CAS  Google Scholar 

  22. Yang XS, Chen L. Yang YA, He YZ, Zou SL, Feng W, Yang YY, Liu N, Liao JL, Yuan LH. Synthesis of crescent aromatic oligoamides with preorganized chelating groups and their extraction towards transition metal ions. J Hazard Mater, 2012, 217-218: 171–176

    Article  CAS  Google Scholar 

  23. Zhong LJ, Chen L, Feng W, Zou SL, Yang YY, Liu N, Yuan LH. Shape-persistent macrocycles: efficient extraction towards lanthanide and actinide elements. J Incl Phenom Macrocycl Chem, 2012, 72: 367–373

    Article  CAS  Google Scholar 

  24. Qin B, Ren CL, Ye RJ, Sun C, Chiad K, Chen XY, Li Z, Xue F, Su HB, Chass GA, Zeng HQ. Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding activities with high ion selectivity. J Am Chem Soc, 2010, 132: 9564–9566

    Article  CAS  Google Scholar 

  25. Ren CL, Maurizot V, Zhao HQ, Shen J, Zhou F, Ong WQ, Du ZY, Zhang K, Su HB, Zeng HQ. Five-folded-symmetric macrocyclic aromatic pentamers: high-affinity cation recognition, ion-pair-induced columnar stacking and nanofibrillation. J Am Chem Soc, 2011, 133: 13930–13933

    Article  CAS  Google Scholar 

  26. Gao RZ, Hu JC, Zhang K, He YZ, Liu P, Luo SZ, Yang YQ, Yang L, Feng W, Yuan LH. Highly selective fluorescent recognition towards Th4+ based on coumarin-derivatized crescent aromatic oligoamide. Chin J Chem, 2013, 31: 689–694

    Article  CAS  Google Scholar 

  27. Jiang Q, He LT, Luo SZ, Yang YQ, Yang L, Feng W, Yuan LH. Synthesis of a crescent aromatic oligothioamide and its high selectivity in recognizing copper(II) ions. Chinese Chem Lett, 2013, 24: 881–884

    Article  CAS  Google Scholar 

  28. Stylianides N, Danopoulos AA, Pugh D, Hancock F, Zanotti-Gerosa A. Cyclometalated and alkoxyphenyl-substituted palladium imidazolin-2-ylidene complexes. Synthetic, structural, and catalytic studies. Organometallics, 2007, 26: 5627–5635

    Article  CAS  Google Scholar 

  29. Feng W, Yamato K, Yang LQ, Ferguson JS, Zhong LJ, Zou SL, Yuan LH, Zeng XC, Gong B. Efficient kinetic macrocyclization. J Am Chem Soc, 2009, 131: 2629–2637

    Article  CAS  Google Scholar 

  30. Lewis FW, Harwood LM, Hudson MJ, Drew MGB, Sypula M, Modolo G, Whittaker D, Sharrad CA, Videva V, Hubscher-Bruder V, Arnaud-Neu F. Complexation of lanthanides, actinides and transition metal cations with a 6-(1,2,4-triazin-3-yl)-2,2′:6′,2″-terpyridine ligand: implications for actinide(III)/lanthanide(III) partitioning. Dalton Trans, 2012, 41: 9209–9219

    Article  CAS  Google Scholar 

  31. Pederson CJ. New macrocyclic polyethers. J Am Chem Soc, 1970, 92: 391–394

    Article  Google Scholar 

  32. No K, Lee JH, Yang SH, Yu SH, Cho MH, Kim MJ, Kim JS. Syntheses and conformations of tetrahomodioxacalix[4]arene tetraamides and tetrathioamides. J Org Chem, 2002, 67: 3165–3168

    Article  CAS  Google Scholar 

  33. Lee HJ, Choi YS, Lee KB, Park J, Yoon CJ. Hydrogen bonding abilities of thioamide. J Phys Chem A, 2002, 106: 7010–7017

    Article  CAS  Google Scholar 

  34. Berstein J, Davis RE, Shimoni L, Chang NL. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Eng, 1995, 34: 1555–1573

    Article  Google Scholar 

  35. Zhu J, Parra RD, Zeng HQ, Skrzypczak-Jankun E, Zeng XC, Gong B. A new class of folding oligomers: crescent oligoamides. J Am Chem Soc, 2000, 122: 4219–4220

    Article  CAS  Google Scholar 

  36. Tabakci B, Alici O, Karatas I. 4-tert-Butylcalix[4]arene having nitrile pendant groups as Hg2+ selective receptors. Talanta, 2013, 106: 92–96

    Article  CAS  Google Scholar 

  37. Sheng RL, Wang PF, Gao YH, Wu Y, Liu WM, Ma JJ, Li HP, Wu SK. Colorimetric test kit for Cu2+ detection. Org Lett, 2008, 10: 5015–5018

    Article  CAS  Google Scholar 

  38. Barba-Bon A, Costero AM, Gil S, Parra M, Soto J, Martínez-Máñez R, Sancenón F. A new selective fluorogenic probe for trivalent cations. Chem Commun, 2012, 48: 3000–3002

    Article  CAS  Google Scholar 

  39. Zhu M, Yuan MJ, Liu XF, Xu JL, Lv J, Huang CS, Liu HB, Li YL, Wang S, Zhu DB. Visible near-infrared chemosensor for mercury ion. Org Lett, 2008, 10: 1481–1484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Feng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Jiang, Q., Gao, R. et al. Crescent aromatic oligothioamides as highly selective receptors for copper(II) ion. Sci. China Chem. 57, 1246–1256 (2014). https://doi.org/10.1007/s11426-014-5110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5110-2

Keywords

Navigation