Skip to main content
Log in

Organothorium complexes containing terminal metal-ligand multiple bonds

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organoactinide complexes containing terminal metal-ligand multiple bonds have received widespread attention over the past three decades. In the last few years, significant progress has been made in the synthesis and characterization of the imido, oxo, sulfido, and carbene-containing complexes of thorium. Such thorium complexes are of interest because of their unique structural properties, their potential application in novel group transfer reactions and catalysis, as well as their ability to engage the 5f orbitals in metal-ligand bonding. This short review summarizes the synthesis and reactivity of these thorium complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zi GF, Zhang ZB, Xiang L, Wang QW. Progress in multiple-bonded organoactinides. Chin J Org Chem, 2006, 26: 1606–1611

    CAS  Google Scholar 

  2. Fox AR, Bart SC, Meyer K, Cummins CC. Towards uranium catalysts. Nature, 2008, 455: 341–349

    Article  CAS  Google Scholar 

  3. Hayton TW. Metal-ligand multiple bonding in uranium: structure and reactivity. Dalton Trans, 2010, 39: 1145–1158

    Article  CAS  Google Scholar 

  4. Qiu J, Burns PC. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem Rev, 2013, 113: 1097–1120

    Article  CAS  Google Scholar 

  5. Jones MB, Gaunt AJ. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev, 2013, 113: 1137–1198

    Article  CAS  Google Scholar 

  6. Nyman M, Burns PC. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem Soc Rev, 2012, 41: 7354–7367

    Article  CAS  Google Scholar 

  7. Natrajan LS. Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coord Chem Rev, 2012, 256: 1583–1603

    Article  CAS  Google Scholar 

  8. Andrews MB, Cahill CL. Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem Rev, 2013, 113: 1121–1136

    Article  CAS  Google Scholar 

  9. Baker RJ. New reactivity of the uranyl(VI) ion. Chem Eur J, 2012, 18: 16258–16271

    Article  CAS  Google Scholar 

  10. Ren W, Zhao N, Chen L, Zi G. Progress in terminal-imido organoactinide complexes. Chin J Org Chem, 2013, 33: 771–779

    Article  CAS  Google Scholar 

  11. Hayton TW. Recent developments in actinide-ligand multiple bonding. Chem Commun, 2013, 49: 2956–2973

    Article  CAS  Google Scholar 

  12. Ephritikhine M. Recent advances in organoactinide chemistry as exemplified by cyclopentadienyl compounds. Organometallics, 2013, 32: 2464–2488

    Article  CAS  Google Scholar 

  13. Haskel A, Straub T, Eisen MS. Organoactinide-catalyzed intermolecular hydroamination of terminal alkynes. Organometallics, 1996, 15: 3773–3775

    Article  CAS  Google Scholar 

  14. Straub T, Haskel A, Neyroud TG, Kapon M, Botoshansky M, Eisen MS. Intermolecular hydroamination of terminal alkynes catalyzed by organoactinide complexes. Scope and mechanistic studies. Organometallics, 2001, 20: 5017–5035

    Article  CAS  Google Scholar 

  15. Korobkov I, Gambarotta S, Yap GPA. The first thorium arene complex: a divalent synthon. Angew Chem Int Ed, 2003, 42: 814–818

    Article  CAS  Google Scholar 

  16. Schelter EJ, Morris DE, Scott BL, Kiplinger JL. Actinide-mediated coupling of 4-fluorobenzonitrile: synthesis of an eight-membered thorium(IV) tetraazametallacycle. Chem Commun, 2007: 1029–1031

    Google Scholar 

  17. Ren W, Zi G, Fang DC, Walter MD. A base-free thorium-terminal-imido metallocene: synthesis, structure and reactivity. Chem Eur J, 2011, 17: 12669–12682

    Article  CAS  Google Scholar 

  18. Ren W, Zi G, Fang DC, Walter MD. Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity and computational studies. J Am Chem Soc, 2011, 133: 13183–13196

    Article  CAS  Google Scholar 

  19. Ren W, Deng X, Zi G, Fang DC. The Th=C double bond: an experimental and computational study of thorium poly-carbene complexes. Dalton Trans, 2011, 40: 9662–9664

    Article  CAS  Google Scholar 

  20. Ren W, Zi G, Walter MD. Synthesis, structure and reactivity of a thorium metallocene containing a 2,2′-bipyridyl ligand. Organometallics, 2012, 31: 672–679

    Article  CAS  Google Scholar 

  21. Ren W, Song H, Zi G, Walter MD. A bipyridyl thorium metallocene: synthesis, structure and reactivity. Dalton Trans, 2012, 41: 5965–5973

    Article  CAS  Google Scholar 

  22. Ren W, Lukens WW, Zi G, Maron L, Walter MD. Is the bipyridyl thorium metallocene a low-valent thorium complex? A combined experimental and computational study. Chem Sci, 2013, 4: 1168–1174

    Article  CAS  Google Scholar 

  23. Wang X, Andrews L, Thanthiriwatte KS, Dixon DA. Infrared spectra of H2ThS and H2US in noble gas matrixes: enhanced H-An-S covalent bonding. Inorg Chem, 2013, 52: 10275–10285

    Article  CAS  Google Scholar 

  24. Mills DP, Cooper OJ, Tuna F, McInnes EJL, Davies ES, McMaster J, Moro F, Lewis W, Blake AJ, Liddle ST. Synthesis of a uranium(VI)-carbene: reductive formation of uranyl(V)-methanides, oxidative preparation of a [R2C=U=O]2+ analogue of the [O=U=O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of UIV=C, UV=C, and UVI=C double bonds. J Am Chem Soc, 2012, 134: 10047–10054

    Article  CAS  Google Scholar 

  25. Thomson RK, Cantat T, Scott BL, Morris DE, Batista ER, Kiplinger JL. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride. Nat Chem, 2010, 2: 723–729

    Article  CAS  Google Scholar 

  26. Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Conradson SD, Kozimor SA, Martin RL, Schwarz DE, Shuh DK, Wagner GL, Wilkerson MP, Wolfsberg LE, Yang P. Determining relative f and d orbital contributions to M-Cl covalency in MCl6 2− (M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J Am Chem Soc, 2012, 134: 5586–5597

    Article  CAS  Google Scholar 

  27. Kaltsoyannis N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg Chem, 2013, 52: 3407–3413

    Article  CAS  Google Scholar 

  28. Bagnall KW. The Actinide Elements. Amsterdam: Elsevier, 1972.

    Google Scholar 

  29. Choppin GR. Covalency in f-element bonds. J Alloys Compd, 2002, 344: 55–59

    Article  CAS  Google Scholar 

  30. Parkin, G. Terminal chalcogenido complexes of the transition metals. Prog Inorg Chem, 1998, 47: 1–165

    Article  CAS  Google Scholar 

  31. Warncke R. Gmelin Handbuch der Anorganischen Chemie. Ergänzungsband Teil C1: Thorium. Berlin: Springer-Verlag, 1978.

    Google Scholar 

  32. Zi GF, Jia L, Werkema EL, Walter MD, Gottfriedsen JP, Andersen RA. Preparation and reactions of base-free bis(1,2,4-tri-tert-butylcy-clopentadienyl)uranium oxide, Cp′2UO. Organometallics, 2005, 24: 4251–4264

    Article  CAS  Google Scholar 

  33. Kraft SJ, Walensky J, Franwick PE, Hall MB, Bart SC. Crystallographic evidence of a base-free uranium(IV) terminal oxo species. Inorg Chem, 2010, 49: 7620–7622

    Article  CAS  Google Scholar 

  34. Zi G, Blosch LL, Jia L, Andersen RA. Preparation and reactions of base-free bis(1,3,4-tri-tert-butylcyclopentadienyl)uranium methylimide, Cp′2U=NMe, and related compounds. Organometallics, 2005, 24: 4602–4612

    Article  CAS  Google Scholar 

  35. Nugent LJ, Baybarz RD, Burnett JL, Ryan JL. Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II–III) oxidation potential for each member of the lanthanide and actinide series. J Phys Chem, 1973, 77: 1528–1539

    Article  CAS  Google Scholar 

  36. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A, 1976, 32: 751–767

    Article  Google Scholar 

  37. Howard WA, Trnka TM, Waters M, Parkin G. Terminal chalcogenido complexes of zirconium: syntheses and reactivity of Cp2*Zr(E)(NC5H5) (E = O, S, Se, Te). J Organomet Chem, 1997, 528: 95–121

    Article  CAS  Google Scholar 

  38. Polse JL, Andersen RA, Bergman RG. Cycloaddition and cycloreversion reactions of a monomeric Ti(IV) oxo complex with terminal and internal alkynes. A reversible oxametallacyclobutene/hydroxoacetylide interconversion. J Am Chem Soc, 1995, 117: 5393–5394

    Article  CAS  Google Scholar 

  39. Carney MJ, Walsh PJ, Bergman RG. Room temperature generation of reactive intermediates Cp*2Zr=O and Cp*2Zr=S: trapping reactions with unsaturated organic molecules and dative ligands. J Am Chem Soc, 1990, 112: 6426–6428

    Article  CAS  Google Scholar 

  40. Barros N, Maynau D, Maron L, Eisenstein O, Zi G, Andersen RA. Single but stronger UO, double but weaker UNMe bonds: the tale told by Cp2UO and Cp2UNR. Organometallics, 2007, 26: 5059–5065

    Article  CAS  Google Scholar 

  41. Yahia A, Maron L. Is thorium a d transition metal or an actinide? An answer from a DFT study of the reaction between pyridine N-oxide and Cp2M(CH3)2 with M = Zr, Th, and U. Organoemtallics, 2009, 28: 672–679

    Article  CAS  Google Scholar 

  42. Hutchings GJ, Heneghan CS, Hudson ID, Taylor SH. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature, 1996, 384: 341–343

    Article  CAS  Google Scholar 

  43. Sweeney ZK, Polse JL, Andersen RA, Bergman RG. Cycloaddition and nucleophilic substitution reactions of the monomeric titanocene sulfido complex (η 5-C5Me5)2(C5H5N)Ti=S. J Am Chem Soc, 1998, 120: 7825–7834

    Article  CAS  Google Scholar 

  44. Mohammad A, Cladis DP, Forrest WP, Franwick PE, Bart SC. Reductive heterocoupling mediated by Cp*2U(2,2′-bpy). Chem Commun, 2012, 48: 1671–1673

    Article  CAS  Google Scholar 

  45. Ma G, Ferguson MJ, McDonald R, Cavell RG. Actinide metals with multiple bonds to carbon: synthesis, characterization, and reactivity of U(IV) and Th(IV) bis(iminophosphorano)methandiide pincer carbene complexes. Inorg Chem, 2011, 50: 6500–6508

    Article  CAS  Google Scholar 

  46. King DM, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Synthesis and structure of a terminal uranium nitride complex. Science, 2012, 337: 717–720

    Article  CAS  Google Scholar 

  47. King DM, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat Chem, 2013, 5: 482–488

    Article  CAS  Google Scholar 

  48. Hayton TW. Uranium chemistry an actinide milestone. Nat Chem, 2013, 5: 451–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoFu Zi.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

ZI GuoFu studied chemistry at Beijing Normal University from 1992 to 1998, where he received his BSc and MSc degrees in 1996 and 1998, respectively. After finished his PhD in 2002 under guidance of Professor Zuowei Xie at the Chinese University of Hong Kong, he joined the group of Professor Richard A. Andersen at the University of California at Berkeley as a postdoctoral fellow. In 2005 he began his independent research career as a principal investigator at Beijing Normal University. His research interests include organometallic chemistry and organic synthesis. He has co-authored about 80 publications in peer-reviewed journals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zi, G. Organothorium complexes containing terminal metal-ligand multiple bonds. Sci. China Chem. 57, 1064–1072 (2014). https://doi.org/10.1007/s11426-014-5094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5094-y

Keywords

Navigation