Skip to main content
Log in

Biomaterials for refractive correction: corneal onlays and inlays

  • Reviews
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared with laser-based refractive surgery and are reversible. In this review, we provide a brief overview of the anatomic microstructure of the human cornea, indicating the primary physiological function for each component. Next, the wide range of biomaterials used as corneal inlays and onlays are considered, from synthetic polymers to biological components derived from the extracellular matrix. The limitations and challenges associated with the most common materials are discussed as is the need to improve their properties to achieve long-term, complication-free intraocular implantation. Finally, the prospect of applying tissue engineering strategies is noted for its potential to generate autologous corneal tissue that could be implanted as the optimal inlay or onlay materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitcher JP, Srinivasan M, Upashyay MP. Corneal blindness: a global perspective. Bull World Health Organ, 2001, 79: 214–221

    CAS  Google Scholar 

  2. Sweeney DF, Vannas A, Hughes TC, Evans MD, McLean KM, Xie RZ, Pravin VK, Prakasam RK. Synthetic corneal inlays. Clin Exp Optom, 2008, 91: 56–66

    Article  Google Scholar 

  3. Xie RZ, Stretton S, Sweeney DF. Artificial cornea: towards a synthetic onlay for correction of refractive error. Biosci Rep, 2001, 21: 513–536

    Article  CAS  Google Scholar 

  4. Sweeney DF. The Max Schapero Memorial Award Lecture 2004: contact lenses on and in the cornea, what the eye needs. Optom Vis Sci, 2006, 83: 133–142

    Article  Google Scholar 

  5. Solomon KD, Fernandez de Castro LE, Sandoval HP, Bartholomew LR, Vroman DT. Refractive surgery survey 2003. J Cataract Refract Surg, 2004, 30: 1556–1569

    Article  Google Scholar 

  6. Kugler LJ, Wang MX. Lasers in refractive surgery: history, present, and future. Appl Opt, 2010, 49: F1–9

    Article  Google Scholar 

  7. Solomon KD, Fernandez de Castro LE, Sandoval HP, Biber JM, Groat B, Neff KD, Ying MS, French JW, Donnenfeld ED, Lindstrom RL. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology, 2009, 116: 691–701

    Article  Google Scholar 

  8. Evans MD, McLean KM, Hughes TC, Sweeney DF. A review of the development of a synthetic corneal onlay for refractive correction. Biomaterials, 2001, 22: 3319–3328

    Article  CAS  Google Scholar 

  9. Carlsson DJ, Li F, Shimmura S, Griffith M. Bioengineered corneas: how close are we? Curr Opin Ophthalmol, 2003, 14: 192–197

    Article  Google Scholar 

  10. Esquenazi S, Bui V, Bibas O. Surgical correction of hyperopia. Surv Ophthalmol, 2006, 51: 381–418

    Article  Google Scholar 

  11. Lindstrom RL, Macrae SM, Pepose JS, Hoopes PC, Sr. Corneal inlays for presbyopia correction. Curr Opin Ophthalmol, 2013, 24: 281–287

    Article  Google Scholar 

  12. Kim P, Sutton GL, Rootman DS. Applications of the femtosecond laser in corneal refractive surgery. Curr Opin Ophthalmol, 2011, 22: 238–244

    Article  Google Scholar 

  13. Germain L, Carrier P, Auger FA, Salesse C, Guerin SL. Can we produce a human corneal equivalent by tissue engineering? Prog Retin Eye Res, 2000, 19: 497–527

    Article  CAS  Google Scholar 

  14. Ruberti JW, Zieske JD. Prelude to corneal tissue engineering-gaining control of collagen organization. Prog Retin Eye Res, 2008, 27: 549–577

    Article  CAS  Google Scholar 

  15. Hanna C, Bicknell DS, O’Brien JE. Cell turnover in the adult human eye. Arch Ophthalmol, 1961, 65: 695–698

    Article  CAS  Google Scholar 

  16. Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol, 1994, 78: 401–408

    Article  CAS  Google Scholar 

  17. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol, 1986, 103: 49–62

    Article  CAS  Google Scholar 

  18. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci, 1987, 28: 212–220

    CAS  Google Scholar 

  19. Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci, 1989, 30: 425–434

    CAS  Google Scholar 

  20. Gipson IK. The Cornea. Scientific Foundation and Clinical Practice. Boston: Little, Brown and Company, 1994

    Google Scholar 

  21. Hayashi S, Osawa T, Tohyama K. Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians. J Morphol, 2002, 254: 247–258

    Article  Google Scholar 

  22. Anseth A. Studies on corneal polysaccharides. III. Topographic and comparative biochemistry. Exp Eye Res, 1961, 1: 106–115

    Article  CAS  Google Scholar 

  23. Anseth A. Glycosaminoglycans in the developing corneal stroma. Exp Eye Res, 1961, 1: 116–121

    Article  CAS  Google Scholar 

  24. Anseth A. Glycosaminoglycans in corneal regeneration. Exp Eye Res, 1961, 1: 122–127

    Article  CAS  Google Scholar 

  25. Anseth A, Laurent TC. Studies on corneal polysaccharides. I. Separation. Exp Eye Res, 1961, 1: 25–38

    Article  CAS  Google Scholar 

  26. Laurent TC, Anseth A. Studies on corneal polysaccharides. II. Characterization. Exp Eye Res, 1961, 1: 99–105

    Article  CAS  Google Scholar 

  27. Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res, 2010, 91: 326–335

    Article  CAS  Google Scholar 

  28. Axelsson I, Heinegard D. Fractionation of proteoglycans from bovine corneal stroma. Biochem J, 1975, 145: 491–500

    CAS  Google Scholar 

  29. Meek KM, Leonard DW. Ultrastructure of the corneal stroma: a comparative study. Biophys J, 1993, 64: 273–280

    Article  CAS  Google Scholar 

  30. Maurice DM. The structure and transparency of the cornea. J Physiol, 1957, 136: 263–286

    CAS  Google Scholar 

  31. Hart RW, Farrell RA. Light scattering in the cornea. J Opt Soc Am, 1969, 59: 766–774

    Article  CAS  Google Scholar 

  32. Benedek GB. Theory of transparency of the eye. Appl Opt, 1971, 10: 459–473

    Article  CAS  Google Scholar 

  33. Pinnamaneni N, Funderburgh JL. Concise review: stem cells in the corneal stroma. Stem Cells, 2012, 30: 1059–1063

    Article  CAS  Google Scholar 

  34. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res, 1985, 4: 671–678

    Article  CAS  Google Scholar 

  35. Maurice DM. The location of the fluid pump in the cornea. J Physiol, 1972, 221: 43–54

    CAS  Google Scholar 

  36. Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res, 2003, 22: 69–94

    Article  CAS  Google Scholar 

  37. Barraquer JI. Modification of refraction by means of intracorneal inclusions. Int Ophthalmol Clin, 1966, 6: 53–78

    Article  CAS  Google Scholar 

  38. McCarey BE. Current status of refractive surgery with synthetic intracorneal lenses: barraquer lecture. Refract Corneal Surg, 1990, 6: 40–46

    CAS  Google Scholar 

  39. McCarey BE. Refractive keratoplasty with synthetic lens implants. Int Ophthalmol Clin, 1991, 31: 87–99

    Article  CAS  Google Scholar 

  40. McCarey BE, McDonald MB, van Rij G, Salmeron B, Pettit DK, Knight PM. Refractive results of hyperopic hydrogel intracorneal lenses in primate eyes. Arch Ophthalmol, 1989, 107: 724–730

    Article  CAS  Google Scholar 

  41. McCarey BE, Storie BR, van Rij G, Knight PM. Refractive predictability of myopic hydrogel intracorneal lenses in nonhuman primate eyes. Arch Ophthalmol, 1990, 108: 1310–1315

    Article  CAS  Google Scholar 

  42. Kaufman HE. The correction of aphakia. XXXVI Edward Jackson memorial lecture. Am J Ophthalmol, 1980, 89: 1–10

    CAS  Google Scholar 

  43. McDonald MB, Klyce SD, Suarez H, Kandarakis A, Friedlander MH, Kaufman HE. Epikeratophakia for myopia correction. Ophthalmology, 1985, 92: 1417–1422

    Article  CAS  Google Scholar 

  44. Werblin TP, Kaufman HE. Epikeratophakia: the surgical correction of aphakia. II. Preliminary results in a non-human primate model. Curr Eye Res, 1981, 1: 131–137

    Article  CAS  Google Scholar 

  45. Werblin TP, Klyce SD. Epikeratophakia: the surgical correction of aphakia. I. Lathing of corneal tissue. Curr Eye Res, 1981, 1: 123–129

    Article  CAS  Google Scholar 

  46. Hicks CR, Fitton JH, Chirila TV, Crawford GJ, Constable IJ. Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol, 1997, 42: 175–189

    Article  CAS  Google Scholar 

  47. Chirila TV, Hicks CR, Dalton PD. Artificial cornea. Prog Polym Sci, 1998, 23: 447–473

    Article  CAS  Google Scholar 

  48. Rao GN, Ganti S, Aquavella JV. Specular microscopy of corneal epithelium after epikeratophakia. Am J Ophthalmol, 1987, 103: 392–396

    CAS  Google Scholar 

  49. Rodrigues M, Nirankari V, Rajagopalan S, Jones K, Funderburgh J. Clinical and histopathologic changes in the host cornea after epikeratoplasty for keratoconus. Am J Ophthalmol, 1992, 114: 161–170

    CAS  Google Scholar 

  50. Yamaguchi T, Koenig SB, Kimura T, Werblin TP, McDonald MB, Kaufman HE. Histological study of epikeratophakia in primates. Ophthalmic Surg, 1984, 15: 230–235

    CAS  Google Scholar 

  51. Dupont D, Gravagna P, Albinet P, Tayot JL, Romanet JP, Mouillon M, Eloy R. Biocompatibility of human collagen type IV intracorneal implants. Cornea, 1989, 8: 251–258

    Article  CAS  Google Scholar 

  52. Kornmehl EW, Bredvik BK, Kelman CD, Raizman MB, DeVore DP. In vivo evaluation of a collagen corneal allograft derived from rabbit dermis. J Refract Surg, 1995, 11: 502–506

    CAS  Google Scholar 

  53. Thompson KP, Hanna K, Waring GO, 3rd, Gipson I, Liu Y, Gailitis RP, Johnson-Wint B, Green K. Current status of synthetic epikeratoplasty. Refract Corneal Surg, 1991, 7: 240–248

    CAS  Google Scholar 

  54. Thompson KP, Hanna KD, Gipson IK, Gravagna P, Waring GO, 3rd, Johnson-Wint B. Synthetic epikeratoplasty in rhesus monkeys with human type IV collagen. Cornea, 1993, 12: 35–45

    Article  CAS  Google Scholar 

  55. Wichterle O, Lím D. Hydrophilic gels for biological use. Nature, 1960, 185: 117–118

    Article  Google Scholar 

  56. Chirila TV. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001, 22: 3311–3317

    Article  CAS  Google Scholar 

  57. Dohlman CH, Refojo MF, Rose J. Synthetic polymers in corneal surgery. I. Glyceryl methacrylate. Arch Ophthalmol, 1967, 77: 252–257

    Article  CAS  Google Scholar 

  58. Imagawa N, Kamiyama R. Experimental study of intralamellar implantation—evaluation of hydroxyethyl-methacrylate polymer. Nihon Ganka Gakkai Zasshi, 1979, 83: 1043–1054

    CAS  Google Scholar 

  59. McCarey BE, Andrews DM. Refractive keratoplasty with intrastromal hydrogel lenticular implants. Invest Ophthalmol Vis Sci, 1981, 21: 107–115

    CAS  Google Scholar 

  60. McCarey BE, Andrews DM, Hatchell DL, Pederson H. Hydrogel implants for refractive keratoplasty: corneal morphology. Curr Eye Res, 1982, 2: 29–38

    Article  CAS  Google Scholar 

  61. Myung D, Koh W, Bakri A, Zhang F, Marshall A, Ko J, Ko J, Noolandi J, Carrasco M, Cochran JR, Frank CW, Ta CN. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices, 2007, 9: 911–922

    Article  CAS  Google Scholar 

  62. Binder PS. Hydrogel implants for the correction of myopia. Curr Eye Res, 1982, 2: 435–441

    Article  Google Scholar 

  63. Sendele DD, Abelson MB, Kenyon KR, Hanninen LA. Intracorneal lens implantation. Arch Ophthalmol, 1983, 101: 940–944

    Article  CAS  Google Scholar 

  64. Werblin TP, Patel AS, Barraquer JI. Initial human experience with Permalens myopic hydrogel intracorneal lens implants. Refract Corneal Surg, 1992, 8: 23–26

    CAS  Google Scholar 

  65. Werblin TP, Peiffer RL, Binder PS, McCarey BE, Patel AS. Eight years experience with Permalens intracorneal lenses in nonhuman primates. Refract Corneal Surg, 1992, 8: 12–22

    CAS  Google Scholar 

  66. McDonald MB, McCarey BE, Storie B, Beuerman RW, Salmeron B, van Rij G, Knight PM. Assessment of the long-term corneal response to hydrogel intrastromal lenses implanted in monkey eyes for up to five years. J Cataract Refract Surg, 1993, 19: 213–222

    Article  CAS  Google Scholar 

  67. Beekhuis WH, McCarey BE, van Rij G, Waring GO, 3rd. Complications of hydrogel intracorneal lenses in monkeys. Arch Ophthalmol, 1987, 105: 116–122

    Article  CAS  Google Scholar 

  68. McCarey BE, Lane SS, Lindstrom RL. Alloplastic corneal lenses. Int Ophthalmol Clin, 1988, 28: 155–164

    Article  CAS  Google Scholar 

  69. Ruckhofer J, Bohnke M, Alzner E, Grabner G. Confocal microscopy after implantation of intrastromal corneal ring segments. Ophthalmology, 2000, 107: 2144–2151

    Article  CAS  Google Scholar 

  70. Ruckhofer J, Stoiber J, Alzner E, Grabner G. One year results of European multicenter study of intrastromal corneal ring segments. Part 2: complications, visual symptoms, and patient satisfaction. J Cataract Refract Surg, 2001, 27: 287–296

    Article  CAS  Google Scholar 

  71. Linebarger EJ, Song D, Ruckhofer J, Schanzlin DJ. Intacs: the intrastromal corneal ring. Int Ophthalmol Clin, 2000, 40: 199–208

    Article  CAS  Google Scholar 

  72. Hicks CR, Crawford GJ, Dart JK, Grabner G, Holland EJ, Stulting RD, Tan DT, Bulsara M. AlphaCor: Clinical outcomes. Cornea, 2006, 25: 1034–1042

    Article  Google Scholar 

  73. Trinkaus-Randall V, Wu XY, Tablante R, Tsuk A. Implantation of a synthetic cornea: design, development and biological response. Artif Organs, 1997, 21: 1185–1191

    Article  CAS  Google Scholar 

  74. Myung D, Farooqui N, Waters D, Schaber S, Koh W, Carrasco M, Noolandi J, Frank CW, Ta CN. Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: a pilot study. Curr Eye Res, 2008, 33: 29–43

    Article  CAS  Google Scholar 

  75. Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN. Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res A, 2009, 90: 70–81

    Article  CAS  Google Scholar 

  76. Hartmann L, Watanabe K, Zheng LL, Kim CY, Beck SE, Huie P, Noolandi J, Cochran JR, Ta CN, Frank CW. Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. J Biomed Mater Res B Appl Biomater, 2011, 98: 8–17

    Article  CAS  Google Scholar 

  77. Tan XW, Hartman L, Tan KP, Poh R, Myung D, Zheng LL, Waters D, Noolandi J, Beuerman RW, Frank CW, Ta CN, Tan DT, Mehta JS. In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation. J Mater Sci Mater Med, 2013, 24: 967–977

    Article  CAS  Google Scholar 

  78. Chirila TV. First development of a polyurethane keratoprosthesis and its Australian connection: an unbeknown episode in the history of artificial cornea. Clin Experiment Ophthalmol, 2006, 34: 485–488

    Article  Google Scholar 

  79. Evans MD, Dalton BA, Steele JD. Persistent adhesion of epithelial tissue is sensitive to polymer topography. J Biomed Mater Res, 1999, 46: 485–493

    Article  CAS  Google Scholar 

  80. Evans MD, Taylor S, Dalton BA, Lohmann D. Polymer design for corneal epithelial tissue adhesion: pore density. J Biomed Mater Res A, 2003, 64: 357–364

    Article  CAS  Google Scholar 

  81. Sianesi D, Marchionni G, Pasquale RJ. Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum Press, 1994

    Google Scholar 

  82. Capporiccio G, Corti C, Soldini S, Carniselli G. Perflurpolyether fluids for vaccum technologies. Ind Eng Chem Prod Res Rev, 1982, 21: 515–519

    Article  Google Scholar 

  83. Moulder JF, Hammond IJS, Smith KL. Using angle-resolved ESCA to characterize Winchester disks. Appl Surf Sci, 1986, 25: 446–454

    Article  CAS  Google Scholar 

  84. Legeais JM, Werner LP, Legeay G, Briat B, Renard G. In vivo study of a fluorocarbon polymer-coated intraocular lens in a rabbit model. J Cataract Refract Surg, 1998, 24: 371–379

    Article  CAS  Google Scholar 

  85. Legeais JM, Rossi C, Renard G, Salvoldelli M, D’Hermies F, Pouliquen YJ. A new fluorocarbon for keratoprosthesis. Cornea, 1992, 11: 538–545

    Article  CAS  Google Scholar 

  86. Legeais JM, Renard G, Parel JM, Savoldelli M, Pouliquen Y. Keratoprosthesis with biocolonizable microporous fluorocarbon haptic. Preliminary results in a 24-patient study. Arch Ophthalmol, 1995, 113: 757–763

    Article  CAS  Google Scholar 

  87. Legeais JM, Renard G. A second generation of artificial cornea (Biokpro II). Biomaterials, 1998, 19: 1517–1522

    Article  CAS  Google Scholar 

  88. Rice DE, Ihlenfeld JV. Ophthalmic device comprising a polymer of telechelic perfluoropolyether. US Patent 4818801, 1989

    Google Scholar 

  89. Evans MD, Prakasam RK, Vaddavalli PK, Hughes TC, Knower W, Wilkie JS, McLean KM, Johnson G, McFarland GA, Xie RZ, Sweeney DF. A perfluoropolyether corneal inlay for the correction of refractive error. Biomaterials, 2011, 32: 3158–3165

    Article  CAS  Google Scholar 

  90. Xie RZ, Evans MD, Bojarski B, Hughes TC, Chan GY, Nguyen X, Wilkie JS, McLean KM, Vannas A, Sweeney DF. Two-year preclinical testing of perfluoropolyether polymer as a corneal inlay. Invest Ophthalmol Vis Sci, 2006, 47: 574–581

    Article  Google Scholar 

  91. Evans MD, Chaouk H, Wilkie JS, Dalton BA, Taylor S, Xie RZ, Hughes TC, Johnson G, McFarland GA, Griesser HH, Steele JG, Meijs GF, Sweeney DF, McLean KM. The influence of surface topography of a porous perfluoropolyether polymer on corneal epithelial tissue growth and adhesion. Biomaterials, 2011, 32: 8870–8879

    Article  CAS  Google Scholar 

  92. Evans MD, Xie RZ, Fabbri M, Bojarski B, Chaouk H, Wilkie JS, McLean KM, Cheng HY, Vannas A, Sweeney DF. Progress in the development of a synthetic corneal onlay. Invest Ophthalmol Vis Sci, 2002, 43: 3196–3201

    Google Scholar 

  93. Sweeney DF, Keay L, Carnt N, Holden BA. Practitioner guidelines for continuous wear with high Dk silicone hydrogel contact lenses. Clin Exp Optom, 2002, 85: 161–167

    Article  Google Scholar 

  94. Hudges TC, Chan GYN. Design principles of synthetic inlays and onlays. Mater Forum, 2001, 25: 216–245

    Google Scholar 

  95. Evans MDM, Sweeney DF. Synthetic Corneal Implants. Cambridge, UK: Woodhead Publishing Ltd, 2010

    Google Scholar 

  96. Patel S, Marshall J, Fitzke FW 3rd. Refractive index of the human corneal epithelium and stroma. J Refract Surg, 1995, 11: 100–105

    CAS  Google Scholar 

  97. Sweeney DF, Xie RZ, O’Leary DJ, Vannas A, Odell R, Schindhelm K, Cheng HY, Steele JG, Holden BA. Nutritional requirements of the corneal epithelium and anterior stroma: clinical findings. Invest Ophthalmol Vis Sci, 1998, 39: 284–291

    CAS  Google Scholar 

  98. Xie RZ, Sweeney DF, Griesser HJ, Tout S, Cheng HY, Steele JG. A thin glycoprotein coating of a synthetic lenticule does not cause nutritional deficiency of the anterior cornea. Curr Eye Res, 1999, 18: 335–341

    Article  CAS  Google Scholar 

  99. Chaouk H, Wilkie JS, Meijs GF. New porous perfluoropolyether membranes. J Appl Polym Sci, 2001, 80: 1756–1763

    Article  CAS  Google Scholar 

  100. Xie RZ, Sweeney DF, Griesser HJ, Steele JG. Effects of surface topography on corneal epithelialization in vivo: a preliminary study. Aust N Z J Ophthalmol, 1998, 26 Suppl 1: S47–49

    Article  Google Scholar 

  101. Steele JG, Johnson G, McLean KM, Beumer GJ, Griesser HJ. Effect of porosity and surface hydrophilicity on migration of epithelial tissue over synthetic polymer. J Biomed Mater Res, 2000, 50: 475–482

    Article  CAS  Google Scholar 

  102. Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG. Surface topography can interfere with epithelial tissue migration. J Biomed Mater Res, 1998, 42: 245–257

    Article  CAS  Google Scholar 

  103. Dalton BA, McFarland CD, Gengenbach TR, Griesser HJ, Steele JG. Polymer surface chemistry and bone cell migration. J Biomater Sci Polym Ed, 1998, 9: 781–799

    Article  CAS  Google Scholar 

  104. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials, 2008, 29: 3960–3972

    Article  CAS  Google Scholar 

  105. Merrett K, Liu W, Mitra D, Camm KD, McLaughlin CR, Liu Y, Watsky MA, Li F, Griffith M, Fogg DE. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials, 2009, 30: 5403–5408

    Article  CAS  Google Scholar 

  106. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 2008, 29: 1147–1158

    Article  CAS  Google Scholar 

  107. Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30: 1551–1559

    Article  CAS  Google Scholar 

  108. Duan X, McLaughlin C, Griffith M, Sheardown H. Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials, 2007, 28: 78–88

    Article  CAS  Google Scholar 

  109. Deng C, Li F, Hackett JM, Chaudhry SH, Toll FN, Toye B, Hodge W, Griffith M. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater, 2010, 6: 187–194

    Article  CAS  Google Scholar 

  110. Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater, 2013, 9: 7796–7805

    Article  CAS  Google Scholar 

  111. Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, Polarek JW, Söderqvist M, Griffith M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med, 2010, 2: 46ra61

    Article  CAS  Google Scholar 

  112. Fagerholm P, Lagali NS, Carlsson DJ, Merrett K, Griffith M. Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci, 2009, 2: 162–164

    Article  CAS  Google Scholar 

  113. Wu J, Du Y, Watkins SC, Funderburgh JL, Wagner WR. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials, 2012, 33: 1343–1352

    Article  CAS  Google Scholar 

  114. Wu J, Du Y, Mann MM, Yang E, Funderburgh JL, Wagner WR. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng Part A, 2013, 19: 2063–2075

    Article  CAS  Google Scholar 

  115. Karamichos D, Guo XQ, Hutcheon AE, Zieske JD. Human corneal fibrosis: an in vitro model. Invest Ophthalmol Vis Sci, 2010, 51: 1382–1388

    Article  Google Scholar 

  116. Karamichos D, Hutcheon AE, Zieske JD. Transforming growth factor-β3 regulates assembly of a non-fibrotic matrix in a 3D corneal model. J Tissue Eng Regen Med, 2011, 5: e228–238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Funderburgh, J.L. & Wagner, W.R. Biomaterials for refractive correction: corneal onlays and inlays. Sci. China Chem. 57, 501–509 (2014). https://doi.org/10.1007/s11426-014-5083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5083-1

Keywords

Navigation