Skip to main content
Log in

Heterometallic copper(II) vanadates: synthesis, crystal structures and third-order nonlinear optical properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three polymeric heterometallic clusters with 1D, 2D, and 3D frameworks, constructed from a cyclic vanadate {V4O12}4− building block and three geometric constraint ligands, were synthesized by a one-pot self-assembly reaction. Z-scan experiments demonstrated that all the three cluster polymers have large hyperpolarizability γ values. TD-DFT calculations afforded insight into the electronic transitions and spectral characterization of these novel NLO molecular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y, Hanack M, Araki Y, Ito O. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. Chem Soc Rev, 2005, 34: 517–529

    Article  Google Scholar 

  2. De La TG, Vázquez P, Agulló-López F, Torres T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev, 2004, 104: 3723–3750

    Article  Google Scholar 

  3. Zhang C, Song Y, Wang X. Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: A comparative study. Coord Chem Rev, 2007, 251: 111–141

    Article  CAS  Google Scholar 

  4. Zheng HG, Ji W, Low MLK, Sakane G, Shibahara T, Xin XQ. Crystal structures and non-linear optical properties of cluster compounds [MAu2S4(AsPh3)2] (M = Mo or W). J Chem Soc, Dalton Trans, 1997, 2357–2362

    Google Scholar 

  5. Liu FQ, Li RX, Deng YY, Li WH, Ding NX, Liu GY. Studies on two coordination polymers [M(μ 4-pz25dc)]n (M=Cd or Zn, pz25dc=pyrazine-2,5-dicarboxylato) with three-dimensional pillared-layer three-nodal framework: synthesis, structural characterization, strong optical non-linearities and optical limiting properties. J Organomet Chem, 2009, 694: 3653–3659

    Article  CAS  Google Scholar 

  6. Roberts RL, Schwich T, Corkery TC, Cifuentes MP, Green KA, Farmer JD, Low PJ, Marder TB, Samoc M, Humphrey MG. Organ ometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv Mater, 2009, 21: 2318–2322

    Article  CAS  Google Scholar 

  7. Zhang C, Matsumoto T, Samoc M, Petrie S, Meng S, Christopher Corkery T, Stranger R, Zhang J, Humphrey MG, Tatsumi K. Dodecanuclear-ellipse and decanuclear-wheel nickel(ii) thiolato clusters with efficient femtosecond nonlinear absorption. Angew Chem Int Ed, 2010, 49: 4209–4212

    Article  CAS  Google Scholar 

  8. Ma N, Qiu Y, Sun S, Liu C, Fan M, Su Z. Theoretical investigation on structures, electronic spectra and nonlinear optical properties of gold compounds [X-“Au(PMe3)”2]. Sci China Chem, 2010, 53: 1149–1154

    Article  CAS  Google Scholar 

  9. Wang C, Ma N, Sun S, Qiu Y. Theoretical study on second-order nonlinear optical properties of 1,10-phenanthroline Ru(II) complexes. Sci China Chem, 2012, 55: 1421–1427

    Article  CAS  Google Scholar 

  10. Liu F, Jin Y, Liu B, Li R, Deng Y, Li W, Jian F. A new copper(I) complex based on imidazole and triphenylphosphine ligands: synthesis, structure, third-order nlo, and fluorescence properties. Chin J Chem 2012, 30: 1069–1074

    Article  CAS  Google Scholar 

  11. Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Ni Mhuircheartaigh EM. Nonlinear optical properties of porphyrins. Adv Mater, 2007, 19: 2737–2774

    Article  CAS  Google Scholar 

  12. Thorley KJ, Hales JM, Anderson HL, Perry JW. Porphyrin dimer carbocations with strong near infrared absorption and third-order optical nonlinearity. Angew Chem Int Ed, 2008, 47: 7095–7098

    Article  CAS  Google Scholar 

  13. Shi S, Ji W, Lang JP, Xin XQ. New nonlinear optical chromophore: synthesis, structures, and optical limiting effect of transition-metal clusters (n-Bu4N)3[WM3Br4S4] (M = Cu and Ag). J Phys Chem, 1994, 98: 3570–3572

    Article  CAS  Google Scholar 

  14. Shi S, Ji W, Tang SH, Lang JP, Xin XQ. Synthesis and optical limiting capability of cubane-like mixed metal clusters (n-Bu4N)3[MoAg3BrX3S4] (X = Cl and I). J Am Chem Soc, 1994, 116: 3615–3616

    Article  CAS  Google Scholar 

  15. García ME, García-Vivó D, Ruiz MA. Chemistry of unsaturated group 6 metal complexes with bridging hydroxy and methoxycarbyne ligands. 3. Formation and cleavage of c-c and c-o bonds in the reactions of the complexes [Mo2Cp2(µ-COMe)(µ-COR)(µ-PCy2)]BF4 (R = Me, Et). Organometallics, 2008, 27: 543–554

    Article  Google Scholar 

  16. Liang K, Zheng H, Song Y, Lappert MF, Li Y, Xin X, Huang Z, Chen J, Lu S. Self-assembly of interpenetrating coordination nets formed from interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers. Angew Chem Int Ed, 2004, 43: 5776–5779

    Article  CAS  Google Scholar 

  17. Ge P, Tang SH, Ji W, Shi S, Hou HW, Long DL, Xin XQ, Lu SF, Wu QJ. Alteration of nonlinear refraction by mixing clusters [WOS3Cu3i(py)5] and [MoOS3Cu3i(py)5]. J Phys Chem B, 1997, 101: 27–31

    Article  CAS  Google Scholar 

  18. Zhang C, Song Y, Kühn FE, Wang Y, Xin X, Herrmann WA. Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters. Adv Mater, 2002, 14: 818–822

    Article  CAS  Google Scholar 

  19. Shi S, Hou HW, Xin XQ. Solid state synthesis and self-focusing and nonlinear absorptive properties of two butterfly-shaped clusters WCu2OS3(PPh3)4 and MoCu2OS3(PPh3)3. J Phys Chem, 1995, 99: 4050–4053

    Article  CAS  Google Scholar 

  20. Shi S, Chen Z, Hou H, Xin X, Yu K. Solid-state synthesis, crystal structure, and effective third-order nonlinear optical properties of (NEt4)3[MoOS3Cu3Br32-Br)]·2H2O. Chem Mater, 1995, 7: 1519–1524

    Article  CAS  Google Scholar 

  21. Hou H, Long D, Xin X, Huang X, Kang B, Ge P, Ji W, Shi S. Solid state synthesis, crystal structure, decomposition reactions, and optical nonlinearity of a twin-nest-shaped cluster compound, [Et4N]4[Mo2O2S6Cu6I6]. Inorg Chem, 1996, 35: 5363–5367

    Article  CAS  Google Scholar 

  22. Shi S, Ji W, Xin XQ. Synthesis and superior third-order nonlinear optical properties of the cluster (n-Bu4N)4[Mo8Cu12O8S24]. J Phys Chem, 1995, 99: 894–898

    Article  CAS  Google Scholar 

  23. Aronica C, Chastanet G, Zueva E, Borshch SA, Clemente-Juan JM, Luneau D. A mixed-valence polyoxovanadate(iii,iv) cluster with a calixarene cap exhibiting ferromagnetic V(III)–V(IV) Interactions. J Am Chem Soc, 2008, 130: 2365–2371

    Article  CAS  Google Scholar 

  24. Calzado CJ, Clemente-Juan JM, Coronado E, Gaita-Arino A, Suaud N. Role of the electron transfer and magnetic exchange interactions in the magnetic properties of mixed-valence polyoxovanadate complexes. Inorg Chem, 2008, 47: 5889–5901

    Article  CAS  Google Scholar 

  25. Chen L, Jiang F, Wu M, Li N, Xu W, Yan C, Yue C, Hong M. Half-open hollow cages of pentadecavanadate and hexadecavanadate compounds with large -O-V-O-V- windows. Cryst Growth Des, 2008, 8: 4092–4099

    Article  CAS  Google Scholar 

  26. Daniel C, Hartl H. A mixed-valence viv/vv alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/: Exploring the influence of a μ-oxo ligand in a spin frustrated structure. J Am Chem Soc, 2009, 131: 5101–5114

    Article  CAS  Google Scholar 

  27. Laye RH, Wei Q, Mason PV, Shanmugam M, Teat SJ, Brechin EK, Collison D, Mcinnes EJL. A highly reduced vanadium(iii/iv) polyoxovanadate comprising an octavanadyl square-prism surrounding a dimetallic vanadium(iii) fragment. J Am Chem Soc, 2006, 128: 9020–9021

    Article  CAS  Google Scholar 

  28. Pope M T. In comprehensive coordination chemistry II. McCleverty JA, Meyer TJ, Eds. Elsevier: Oxford, 2004, Vol. 4, pp 635

  29. Sheldrick GM, SADABS, Bruker AXS Inc. Madison, Wisconsin, USA, 2004

  30. Sheldrick GM, SHELXL-97, Program for X-ray crystal structure refinement, University of Göttingen, Göttingen, Germany

  31. Hou H, Li G, Song Y, Fan Y, Zhu Y, Zhu L. Synthesis, crystal structures and third-order nonlinear optical properties of two novel ferrocenyl schiff-base complexes [Ag(L)2](NO3)·(MeOH)·(EtOH) and [HgI2(L)] {L = 1,2-Bis[(ferrocen-l-ylmethylene)amino]ethane}. Eur J Inorg Chem, 2003, 2003: 2325–2332

    Article  Google Scholar 

  32. Sheik-Bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett, 1989, 14: 955–957

    Article  CAS  Google Scholar 

  33. Gaussian 03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian, Inc, Wallingford, CT 2004

  34. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  36. Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett, 1989, 157: 200–206

    Article  CAS  Google Scholar 

  37. Dunningjr TH and Hay PJ. Modern theoretical chemistry, Ed. H. F. Schaefer III. Plenum: New York, 1976, Vol. 3: 1–28

  38. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys, 1985, 82: 270–283

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys, 1985, 82: 299–310

    Article  CAS  Google Scholar 

  40. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys, 1985, 82: 284–298

    Article  CAS  Google Scholar 

  41. Baker LCW, Glick DC. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem Rev, 1998, 98: 3–50

    Article  CAS  Google Scholar 

  42. Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Martínez-Ferrero E, Almeida M, Lopes EB. Metallic conductivity in a polyoxovanadate radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): Synthesis, structure, and physical characterization of β″-(BEDT-TTF)5[H3V10O28]·4H2O. Adv Mater, 2004, 16: 324–32

    Article  CAS  Google Scholar 

  43. Devi RN, Rabu P, Golub Vladimir o, O’connor Charles j, Zubieta J. Ligand influences on the structures of copper(II) vanadates. Structures and magnetic properties of [Cu3(triazolate)2V4O12], [Cu2(tpyrpyz)2V4O12] (tpyrpyz=tetrapyridylpyrazine) and [Cu2(pyrazine)V4O12]. Solid State Sciences, 2002, 4: 1095–1102

    Article  CAS  Google Scholar 

  44. Ishaque Khan M, Ayesh S, Doedens RJ, Yu M, O’connor CJ. Synthesis and characterization of a polyoxovanadate cluster representing a new topology. Chem Commun, 2005, 4658–4660

    Google Scholar 

  45. Qi Y, Li Y, Wang E, Zhang Z, Chang S. Metal-controlled self-assembly of arsenic-vanadium-cluster backbones with organic ligands. Dalton Transactions, 2008, 2335–2345

    Google Scholar 

  46. Liu FQ, Li RX, Deng YY, Li WH, Ding NX, Liu GY. Studies on two coordination polymers M(mu(4)-pz25dc) (n) (M = Cd or Zn, pz25dc=pyrazine-2,5-dicarboxylato) with three-dimensional pillared-layer three-nodal framework: Synthesis, structural characterization, strong optical non-linearities and optical limiting properties. Journal of Organometallic Chemistry, 2009, 694: 3653–3659

    Article  CAS  Google Scholar 

  47. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Elect, 1990, 26: 760–769

    Article  CAS  Google Scholar 

  48. Ji W, Du HJ, Tang SH, Shi S. Nanosecond reverse saturable absorption in cubanelike transition-metal clusters. J Opt Soc Am B, 1995, 12: 876–881

    Article  CAS  Google Scholar 

  49. Hou HW, Xin XQ, Liu J, Chen MQ, Shu S. Synthesis, crystal structure and non-linear optical properties of [NEt4]4[Cu6Mo2S6O2Br2I4]. J Chem Soc, Dalton Trans, 1994, 3211–3214

    Google Scholar 

  50. Luo TT, Tsai HL, Yang SL, Liu YH, Yadav RD, Su CC, Ueng CH, Lin LG, Lu KL. Crystal engineering: Toward intersecting channels from a neutral network with a bcu-type topology. Angew Chem Int Ed, 2005, 44: 6063–6067

    Article  CAS  Google Scholar 

  51. Xia T, Dogariu A, Mansour K, Hagan DJ, Said AA, Van Stryland EW, Shi S. Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions. J Opt Soc Am B, 1998, 15: 1497–1501

    Article  CAS  Google Scholar 

  52. Zhang C, Cao Y, Zhang J, Meng S, Matsumoto T, Song Y, Ma J, Chen Z, Tatsumi K, Humphrey MG. Modulation of third-order nonlinear optical properties by backbone modification of polymeric pillared-layer heterometallic clusters. Adv Mater, 2008, 20: 1870–1875

    Article  CAS  Google Scholar 

  53. Zhang J, Meng S, Song Y, Zhou Y, Cao Y, Li J, Zhao H, Hu J, Wu J, Humphrey MG, Zhang C. Syntheses, structural, theoretical, and nonlinear optical studies of non-interpenetrating three-dimensional nest-shaped-cluster [MoOS3Cu3]-based coordination polymers. Cryst Growth Des, 2010, 11: 100–109

    Article  Google Scholar 

  54. Niu Y, Song Y, Hou H, Zhu Y. Synthesis, structure, and large optical limiting effect of the first coordination polymeric cluster based on an {I@[AgI(inh)]6} hexagram block. Inorg Chem, 2005, 44: 2553–2559

    Article  CAS  Google Scholar 

  55. Yu JH, Lu ZL, Xu JQ, Bie HY, Lu J, Zhang X. Syntheses, characterization and optical properties of some copper(I) halides with 1,10-phenanthroline ligand. New J Chem, 2004, 28: 940–945

    Article  CAS  Google Scholar 

  56. Hou H, Meng X, Song Y, Fan Y, Zhu Y, Lu H, Du C, Shao W. Two-dimensional rhombohedral grid coordination polymers [M(bbbt)2(NCS)2]n (M = Co, Mn, or Cd; bbbt = 1,1′-(1,4-butanediyl) bis-1H-benzotriazole): Synthesis, crystal structures, and third-order nonlinear optical properties. Inorg Chem, 2002, 41: 4068–4075

    Article  CAS  Google Scholar 

  57. McHale JL, Molecular spectroscopy, Pearson Education, Inc., Upper Saddle River, NJ 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FaQian Liu or WeiHua Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, L., Guo, J. et al. Heterometallic copper(II) vanadates: synthesis, crystal structures and third-order nonlinear optical properties. Sci. China Chem. 57, 1235–1245 (2014). https://doi.org/10.1007/s11426-014-5080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5080-4

Keywords

Navigation