Skip to main content
Log in

Responsive polymer-based multicolor fluorescent probes for temperature and Zn2+ ions in aqueous media

  • Articles
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report on the fabrication of fluorescent and multicolor probes for Zn2+ ions and temperature from a mixture of three types of fluorophore-labeled responsive block copolymers in aqueous media. Quinoline-based Zn2+-recognizing fluorescent monomer ZQMA, red-emitting rhodamine B-based monomer RhBEA, and blue-emitting coumarin derivative Coum-OH, were synthesized first. A ZQMA-labeled well-defined double hydrophilic block copolymer (DHBC), PEG-b-P(MEO2MA-co-ZQMA), was synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and ZQMA by utilizing a PEG-based macroRAFT agent. Following similar procedures, PEG-b-P(St-co-RhBEA) amphiphilic diblock copolymer and PEG-b-P(MEO2MA-co-Coum) DHBC were also synthesized, where P(St-co-RhBEA) was a RhBEA-labeled polystyrene (PS) block. At room temperature in aqueous solution, almost nonfluorescent PEG-b-P(MEO2MA-co-ZQMA) can effectively bind Zn2+ ions, leading to prominent green fluorescence enhancement due to the coordination of ZQMA with Zn2+ ions. However, by mixing red-emitting PEG-b-P(St-co-RhBEA) and blue-emitting PEG-b-P(MEO2MA-co-Coum) with PEG-b-P(MEO2MA-co-ZQMA) at an appropriate ratio, three color transitions could be observed. In the absence of Zn2+ ions, a mixed pink fluorescent originating from Coum and RhBEA was observed; upon the addition of a certain amount of Zn2+ ions, the green fluorescence enhanced dramatically, leading to a white fluorescence readout. By further increasing the amount of Zn2+ ions, the green fluorescence further enhanced and overwhelmed the blue and red emissions, leading to a green-dominant mixed-fluorescence emission. In addition, upon increasing the temperature, the fluorescence of Coum decreased considerably due to the fluorescence-resonance energy transfer (FRET) between Coum and ZQMA moieties. In this way, a ratiometric fluorescent thermometer can be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohalloran TV. Transition-metals in control of gene-expression. Science, 1993, 261: 715–725

    Article  CAS  Google Scholar 

  2. Koike T, Watanabe T, Aoki S, Kimura E, Shiro M. Apoptosis a novel biomimetic zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine 1,4,7,10-tetraazacyclododecane (cyclen). J Am Chem Soc, 1996, 118: 12696–12703

    Article  CAS  Google Scholar 

  3. Falchuk KH. The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem, 1998, 188: 41–48

    Article  CAS  Google Scholar 

  4. Frederickson CJ, Bush AI. Synaptically released zinc: physiological functions and pathological effects. BioMetals, 2001, 14: 353–366

    Article  CAS  Google Scholar 

  5. Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nature Rev Neurosci, 2005, 6: 449–462

    Article  CAS  Google Scholar 

  6. Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr, 1998, 17: 109–115

    Article  CAS  Google Scholar 

  7. Prasad AS. Zinc in human health: An update alzheimer’s disease infant diarrhea growth. J Trace Elem Exp Med, 1998, 11: 63–87

    Article  CAS  Google Scholar 

  8. Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of alzheimer’s diseased brains. Brain Res, 2000, 852: 274–278

    Article  CAS  Google Scholar 

  9. Takeda A. Epilepsy zinc homeostasis and functions of zinc in the brain. BioMetals, 2001, 14: 343–351

    Article  CAS  Google Scholar 

  10. Liu J, Yang X, He X, Wang K, Wang Q, Guo Q, Shi H, Huang J, Huo X. Fluorescent nanoparticles for chemical and biological sensing. Sci China Chem, 2011, 54: 1157–1176

    Article  CAS  Google Scholar 

  11. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods, 1987, 20: 91–103

    Article  CAS  Google Scholar 

  12. Sclafani JA, Maranto MT, Sisk TM, VanArman SA. An aqueous ratiometric fluorescence probe for Zn(II). Tetrahedron Lett, 1996, 37: 2193–2196

    Article  CAS  Google Scholar 

  13. Aoki S, Kaido S, Fujioka H, Kimura E. A new zinc(II) fluorophore 2-(9-anthrylmethylamino)ethyl-appended 1,4,7,10-tetraazacyclodo-decane. Inorg Chem, 2003, 42: 1023–1030

    Article  CAS  Google Scholar 

  14. Huang S, Clark RJ, Zhu L. Highly sensitive fluorescent probes for zinc ion based on triazolyl-containing tetradentate coordination motifs. Org Lett, 2007, 9: 4999–5002

    Article  CAS  Google Scholar 

  15. Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P. A simple but effective ferrocene derivative as a redox, colorimetric, and fluorescent receptor for highly selective recognition of Zn2+ ions. Org Lett, 2007, 9: 2385–2388

    Article  CAS  Google Scholar 

  16. Michaels HA, Murphy CS, Clark RJ, Davidson MW, Zhu L. 2-Anthryltriazolyl-containing multidentate ligands: Zinc-coordination mediated photophysical processes and potential in live-cell imaging applications. Inorg Chem, 2010, 49: 4278–4287

    Article  CAS  Google Scholar 

  17. Zhu JF, Yuan H, Chan WH, Lee AWM. A colorimetric and fluorescent turn-on chemosensor operative in aqueous media for Zn2+ based on a multifunctionalized spirobenzopyran derivative. Org Biomol Chem, 2010, 8: 3957–3964

    Article  CAS  Google Scholar 

  18. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T. Selective detection of zinc ions with novel luminescent lanthanide probes. Angew Chem Int Ed, 2003, 42: 2996–2999

    Article  CAS  Google Scholar 

  19. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc, 2004, 126: 12470–12476

    Article  CAS  Google Scholar 

  20. Woodroofe CC, Lippard SJ. A novel two-fluorophore approach to ratiometric sensing of Zn2+. J Am Chem Soc, 2003, 125: 11458–11459

    Article  CAS  Google Scholar 

  21. Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn2+. J Am Chem Soc, 2005, 127: 14962–14963

    Article  CAS  Google Scholar 

  22. Woodroofe CC, Won AC, Lippard SJ. Esterase-activated two-fluorophore system for ratiometric sensing of biological zinc(II). Inorg Chem, 2005, 44: 3112–3120

    Article  CAS  Google Scholar 

  23. Zhang Y, Guo XF, Si WX, Jia LH, Qian XH. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org Lett, 2008, 10: 473–476

    Article  CAS  Google Scholar 

  24. Xue L, Liu C, Jiang H. A ratiometric fluorescent sensor with a large stokes shift for imaging zinc ions in living cells. Chem Commun, 2009: 1061–1063

    Google Scholar 

  25. Zhu JF, Yuan H, Chan WH, Lee AWM. A fret fluorescent chemosensor spaq for Zn2+ based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Lett, 2010, 51: 3550–3554

    Article  CAS  Google Scholar 

  26. Walkup GK, Burdette SC, Lippard SJ, Tsien RY. A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc, 2000, 122: 5644–5645

    Article  CAS  Google Scholar 

  27. Yang JS, Lin YD, Lin YH, Liao FL. Zn(II)-induced ground-state π-deconjugation and excited-state electron transfer in N,N-bis(2-pyridyl)amino-substituted arenes. J Org Chem, 2004, 69: 3517–3525

    Article  CAS  Google Scholar 

  28. Han ZX, Zhang XB, Li Z, Gong YJ, Wu XY, Jin Z, He CM, Jian LX, Zhang J, Shen GL, Yu RQ. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodamine spirolactam as a trigger. Anal Chem, 2010, 82: 3108–3113

    Article  CAS  Google Scholar 

  29. Zhang LY Wan Y, Zhang J, Li D, Wang LH, Song SP Fan CH. The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator. Sci China Chem, 2009, 52: 746–750

    Article  CAS  Google Scholar 

  30. Liu T, Zhang YF, Liu SY. Drug and plasmid DNA co-delivery nanocarriers based on abctype polypeptide hybrid miktoarm star copolymers. Chin J Polym Sci, 2013, 31: 924–937

    Article  CAS  Google Scholar 

  31. Liu T, Hu JM, Yin J, Zhang YF, Li CH, Liu SY. Enhancing detection sensitivity of responsive microgel-based Cu(II) chemosensors via thermo-induced volume phase transitions. Chem Mater, 2009, 21: 3439–3446

    Article  CAS  Google Scholar 

  32. Yin J, Guan XF, Wang D, Liu SY. Metal-chelating and dansyl-labeled poly(n-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity. Langmuir, 2009, 25: 11367–11374

    Article  CAS  Google Scholar 

  33. Hu JM, Li CH, Liu SY. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance. Langmuir, 2010, 26: 724–729

    Article  CAS  Google Scholar 

  34. Hu JM, Liu SY. Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules, 2010, 43: 8315–8330

    Article  CAS  Google Scholar 

  35. Li CH, Liu SY. Responsive nanogel-based dual fluorescent sensors for temperature and Hg2+ ions with enhanced detection sensitivity. J Mater Chem, 2010, 20 (47): 10716–10723

    Article  CAS  Google Scholar 

  36. Li CH, Zhang YX, Hu JM, Cheng JJ, Liu SY. Reversible three-state switching of multicolor fluorescence emission by multiple stimuli modulated fret processes within thermoresponsive polymeric micelles. Angew Chem Int Ed, 2010, 49: 5120–5124

    Article  CAS  Google Scholar 

  37. Wan XJ, Wang D, Liu SY. Fluorescent ph-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir, 2010, 26: 15574–15579

    Article  CAS  Google Scholar 

  38. Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev, 2011, 40: 79–93

    Article  CAS  Google Scholar 

  39. Liu T, Liu S. Responsive polymers-based dual fluorescent chemosensors for Zn2+ ions and temperatures working in purely aqueous media. Anal Chem, 2011, 83: 2775–2785

    Article  CAS  Google Scholar 

  40. Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K. Multi-colour organic light-emitting displays by solution processing. Nature, 2003, 421: 829–833

    Article  CAS  Google Scholar 

  41. Carlos LD, Sá Ferreira RA, Rainho JP, de Zea Bermudez V. Fine-tuning of the chromaticity of the emission color of organic-inorganic hybrids co-doped with euiii, tbiii, and tmiii. Adv Fun Mater, 2002, 12: 819–823

    Article  CAS  Google Scholar 

  42. Yang Y, Lowry M, Schowalter CM, Fakayode SO, Escobedo JO, Xu X, Zhang H, Jensen TJ, Fronczek FR, Warner IM, Strongin RM. An organic white light-emitting fluorophore. J Am Chem Soc, 2006, 128: 14081–14092

    Article  CAS  Google Scholar 

  43. He G, Guo D, He C, Zhang X, Zhao X, Duan C. A color-tunable europium complex emitting three primary colors and white light. Angew Chem Int Ed, 2009, 48: 6132–6135

    Article  CAS  Google Scholar 

  44. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc, 2013, 135: 17617–17629

    Article  CAS  Google Scholar 

  45. Yin J, Hu HB, Wu YH, Liu SY. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. Polym Chem, 2011, 2: 363–371

    Article  CAS  Google Scholar 

  46. Fahrni CJ, O’Halloran TV. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J Am Chem Soc, 1999, 121: 11448–11458

    Article  CAS  Google Scholar 

  47. Nasir MS, Fahrni CJ, Suhy DA, Kolodsick KJ, Singer CP, O’Halloran TV. The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Bio Inorg Chem, 1999, 4: 775–783

    Article  CAS  Google Scholar 

  48. Jiang YY, Hu XL, Hu JM, Liu H, Zhong H, Liu SY. Reactive fluorescence turn-on probes for fluoride ions in purely aqueous media fabricated from functionalized responsive block copolymers. Macromolecules, 2011, 44: 8780–8790

    Article  CAS  Google Scholar 

  49. Alvim J, Dias RLA, Castilho MS, Oliva G, Correa AG. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme ggapdh from trypanosoma cruzi. J Braz Chem Soc, 2005, 16: 763–773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiYong Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Li, Y., Liu, T. et al. Responsive polymer-based multicolor fluorescent probes for temperature and Zn2+ ions in aqueous media. Sci. China Chem. 57, 615–623 (2014). https://doi.org/10.1007/s11426-014-5077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5077-z

Keywords

Navigation