Skip to main content
Log in

Kinetically controlled, high-yield, direct synthesis of [Au25(SePh)18]TOA+

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this article, we present a facile, direct, synthetic approach of preparing monodisperse [Au25(SePh)18] nanoclusters in high yield. In this synthetic approach, two-phase Brust-Schiffrin method is used. Both PhSeH and NaBH4 should be added drop-wise to the solution of Au (III) at the same time. The formula and molecular purity of [Au25(SePh)18]TOA+ clusters are characterized by MALDI-TOF mass spectrometry, NMR and TGA analysis. Furthermore, some critical parameters to obtain pure [Au25(SePh)18]TOA+ are identified, including the NaBH4-to-Au ratio, the selenolate-to-Au ratio and the temperature. The facile, direct, high yield synthetic method can be widely applied in the theoretical research of Au clusters protected by selenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commum, 1994, 0: 801–802

    Article  CAS  Google Scholar 

  2. Qian HF, Zhu MZ, Wu ZK, Jin RC. Quantum sized gold nanoclusters with atomic precision. Acc Chem Res, 2012, 45: 1470–1479

    Article  CAS  Google Scholar 

  3. Maity P, Xie SH, Yamauchi M, Tsukuda T. Stabilized gold clusters: from isolation toward controlled synthesis. Nanoscale, 2012, 4: 4027–4037

    Article  CAS  Google Scholar 

  4. Serrano de la Cruz D, Santillana E, Mingo A, Fuenmayor G, Pantoja A, Fernandez E. Improved thin-layer chromatographic determination of phospholipids in gastric aspirate from newborns, for assessment of lung maturity. Clin Chem, 1988, 34: 736–738

    CAS  Google Scholar 

  5. Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem Rev, 1992, 92: 1709–1727

    CAS  Google Scholar 

  6. Weare WW, Reed SM, Warner MG, Hutchison JE. Improved synthesis of small (d CORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc, 2000, 122: 12890–12891

    Article  CAS  Google Scholar 

  7. Shichibu Y, Suzuki K, Konishi K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale, 2012, 4: 4125–4129

    Article  CAS  Google Scholar 

  8. Gomez S, Philippot K, Colliere V, Chaudret B, Senocq F, Lecante P. Gold nanoparticles from self-assembled gold(I) amine precursors. Chem Commun, 2000, 19: 1945–1946

    Article  Google Scholar 

  9. Kumar A, Mandal S, Pasricha R, Mandale AB, Sastry M. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir, 2003, 19: 6277–6282

    Article  CAS  Google Scholar 

  10. Maity P, Wakabayashi T, Ichikuni N, Tsunoyama H, Xie SH, Yamauchi M, Tsukuda T. Selective synthesis of organogold magic clusters Au54(C ≡ CPh)26. Chem Commun, 2012, 48: 6085–6087

    Article  CAS  Google Scholar 

  11. Meng XM, Xu Q, Wang SX, Zhu MZ. Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters. Nanoscale, 2012, 4: 4161–4165

    Article  CAS  Google Scholar 

  12. Zhu MZ, Lanni E, Garg N, Bier ME, Jin RC. Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc, 2008, 130: 1138–1139

    Article  CAS  Google Scholar 

  13. Zhu MZ, Aikens CM, Hollander FJ, Schatz GC, Jin RC. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc, 2008, 130: 5883–5885

    Article  CAS  Google Scholar 

  14. Nimmala PR, Dass A. Au36(SPh)23 nanomolecules. J Am Chem Soc, 2011, 133: 9175–9177

    Article  CAS  Google Scholar 

  15. Qian HF, Zhu Y, Jin RC. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano, 2009, 3: 3795–3803

    Article  CAS  Google Scholar 

  16. Qian HF, Eckenhoff WT, Zhu Y, Pintauer T, Jin RC. Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc, 2010, 132: 8280–8281

    Article  CAS  Google Scholar 

  17. Dass A. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc, 2009, 131: 11666–11667

    Article  CAS  Google Scholar 

  18. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science, 2007, 318: 430–433

    Article  CAS  Google Scholar 

  19. Qian HF, Jin RC. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett, 2009, 9: 4083–4087

    Article  CAS  Google Scholar 

  20. Qian HF, Zhu Y, Jin RC. Atomically precise gold nanocrystal molecules with surface plasmon resonance. P Natl Acad Sci USA, 2012, 109: 696–700

    Article  CAS  Google Scholar 

  21. Negishi Y, Kamimura U, Ide M, Hirayama M. A photoresponsive Au25 nanocluster protected by azobenzene derivative thiolates. Nanoscale, 2012, 4: 4263–4268

    Article  CAS  Google Scholar 

  22. Wu ZK, Jin RC. On the Ligand’s role in the fluorescence of gold nanoclusters. Nano Lett, 2010, 10: 2568–2573

    Article  CAS  Google Scholar 

  23. Zhu MZ, Aikens CM, Hendrich MP, Gupta R, Qian HF, Schatz GC, Jin RC. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc, 2009, 131: 2490–2492

    Article  CAS  Google Scholar 

  24. Yee CK, Ulman A, Ruiz JD, Parikh A, White H, Rafailovich M. Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles: Chain packing and bond nature. Langmuir, 2003, 19: 9450–9458

    Article  CAS  Google Scholar 

  25. Xu Q, Wang SX, Liu Z, Xu GY, Meng XM; Zhu MZ. Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale, 2013, 5: 1176–1182

    Article  CAS  Google Scholar 

  26. Huang FK, Horton RC, Myles DC, Garrell RL. Selenolates as alternatives to thiolates for self-assembled monolayers: a SERS study. Langmuir, 1998, 14: 4802–4808

    Article  CAS  Google Scholar 

  27. Sato Y, Mizutani F. Formation and characterization of aromatic selenol and thiol monolayers on gold: in-situ IR studies and electrochemical measurements. Phys Chem Chem Phys, 2004, 6: 1328–1331

    Article  CAS  Google Scholar 

  28. Weidner T, Shaporenko A, Müller J, Höltig M, Terfort A, Zharnikov M. Self-assembled monolayers of aromatic tellurides on (111)-oriented gold and silver substrates. J Phys Chem C, 2007, 111: 11627–11635

    Article  CAS  Google Scholar 

  29. Llave D, Scherlis DA. Selenium-based self-assembled monolayers: The nature of adsorbate-surface interactions. Langmuir, 2010, 26: 173–178

    Article  Google Scholar 

  30. Negishi Y, Kurashige W, Kamimura U. Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. Langmuir, 2011, 27: 12289–12292

    Article  CAS  Google Scholar 

  31. Kurashige W, Yamaguchi M, Nobusada K, Negishi Y. Ligand-induced stability of gold nanoclusters: thiolate versus selenolate. J Phys Chem Lett, 2012, 3: 2649–2652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or ManZhou Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Cao, T., Deng, H. et al. Kinetically controlled, high-yield, direct synthesis of [Au25(SePh)18]TOA+ . Sci. China Chem. 57, 1218–1224 (2014). https://doi.org/10.1007/s11426-014-5071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5071-5

Keywords

Navigation