Skip to main content
Log in

Water-induced reversible dissolution/reorganization transformations of Cu(II)-K(I) heterometallic coordination polymers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three new heterometallic coordination compounds, namely, [KCu(I3)(L)2(H2O)2] n (1), [KCu(I3)(L)2(H2O)] n (2) and [CuK4(I3)2(L′)4] n (3), were prepared and characterized (HL=5-methylpyrazine-2-carboxylic acid, HL′=p-tolylacetic acid). Structural studies revealed that 1 and 2 exhibit 3D frameworks with rectangular channels occupied by triiodide ions. Both compounds can be symbolized as a 5-connected net with pcu topology. In compound 3, a one-dimensional polyhedral chain is connected by hexanuclear mask like clusters [Cu2K4O8]. These chains are further linked each other via rare (1,1,3,3)-triiodide ion-bridging units to generate a 3D (4,5,6)-connected net with the point symbol of {12}2{4·122}4{46}{48·62}4{49·66}4. It is noteworthy that water-induced reversible dissolution/reorganization processes occur between 1/2 and [Cu(L)2(H2O)] n ·3nH2O. The thermal and photoluminescence properties of compounds 1, 2, and 3 were investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed, 1998, 37: 1460–1494

    Article  Google Scholar 

  2. Hagrman PJ, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew Chem Int Ed, 1999, 38: 2638–2684

    Article  Google Scholar 

  3. Moulton B, Zaworotko MJ. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101: 1629–1658

    Article  CAS  Google Scholar 

  4. Hill RJ, Long DL, Champness NR, Hubberstey P, Schroder M. New approaches to the analysis of high connectivity materials: design frameworks based upon 44- and 63-subnet tectons. Acc Chem Res, 2005, 38: 335–348

    Article  CAS  Google Scholar 

  5. Yaghi OM, Li H, Davis C, Richardson D, Groy TL. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Re, 1998, 31: 474–484

    Article  CAS  Google Scholar 

  6. James SL. Metal-organic frameworks. Chem Soc Rev, 2003, 32: 276–288

    Article  CAS  Google Scholar 

  7. Filby MH, Steed JW. A modular approach to organic, coordination complex and polymer based podand hosts for anions. Coord Chem Rev, 2006, 250: 3200–3218

    Article  CAS  Google Scholar 

  8. Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers. Chem Soc Rev, 2009, 38: 1228–1236

    Article  CAS  Google Scholar 

  9. Kou HZ, Zhang YD, Cui AL. Carbox-ylate-bridged helical chains based on an azo carboxylate oximate ligand. Sci China Chem, 2012, 6: 1042–1046

    Article  Google Scholar 

  10. Xie G, Li B, Chen SP, Yang Q, Wei W, Gao SL. Cobalt(II) coordina-tion polymers built on isomeric dipyridyl triazole ligands with pyromellitic acid: synthesis, characterization and their effects on the thermal decomposition of ammonium perchlorate. Sci China Chem, 2012, 3: 443–450

    Article  Google Scholar 

  11. Lehn JM. Toward self-organization and complex matter. Science, 2002, 295: 2400–2403

    Article  CAS  Google Scholar 

  12. Friese VA, Kurth DG. Soluble dynamic coordination polymers as a paradigm for materials. Coord Chem Rev, 2008, 252: 199–211

    Article  CAS  Google Scholar 

  13. Jeon YM, Heo J, Mirkin CA. Dynamic Interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers. J Am Chem Soc, 2007, 129: 7480–7481

    Article  CAS  Google Scholar 

  14. Wang JF, Li H, Zhang JJ, Ren N, Wu KZ. Crystal structures and thermal decomposition mechanism of four lantha-nide complexes with halogen-benzoic acid and 1,10-phenanthroline. Sci China Chem, 2012, 10: 2161–2175

    Article  Google Scholar 

  15. Ruben M, Payer D, Landa A, Comisso A, Gattinoni C, Lin N, Collin JP, Sauvage JP, de Vita A, Kern K. 2D supramolecular assemblies of benzene-1,3,5-triyl-tribenzoic acid: temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. J Am Chem Soc, 2006, 128: 15644–15651

    Article  CAS  Google Scholar 

  16. Desiraju GR. News and views feature. Nature, 2001, 412: 397–400

    Article  CAS  Google Scholar 

  17. Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421: 350–353

    Article  CAS  Google Scholar 

  18. Kuhn P, Forget A, Su D, Thomas A, Antonietti M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J Am Chem Soc, 2008, 130: 13333–13337

    Article  CAS  Google Scholar 

  19. Salazar-Mendoza D, Baudron SA, Hosseini MW. Many faces of dipyrrins: from hydrogen-bonded networks to homo- and heteronuclear metallamacrocycles. Inorg Chem, 2008, 47: 766–768

    Article  CAS  Google Scholar 

  20. Bradshaw D, Claridge JB, Cussen EJ, Prior TJ, Rosseinsky MJ. Design, chirality, and flexibility in anoporous molecule-based materials. Acc Chem Res, 2005, 38: 273–282

    Article  CAS  Google Scholar 

  21. Moulton B, Zaworotko MJ. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev, 2001, 101: 1629–1658

    Article  CAS  Google Scholar 

  22. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, M. O’Keeffe, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319: 939–943

    Article  CAS  Google Scholar 

  23. Fujita M, Tominaga M, Hori A, Therrien B. Coordination assemblies from a Pd(II)-cornered square complex. Acc Chem Res, 2005, 38: 369–378

    Article  CAS  Google Scholar 

  24. Kesanli B, Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord Chem Rev, 2003, 246: 305–326

    Article  CAS  Google Scholar 

  25. Morris RE, Wheatley PS, Gasspeicherung in nanoporösen materialien. Angew Chem Int Ed, 2008, 120: 5044–5059

    Article  Google Scholar 

  26. Dincǎ M, Long JR. Wasserstoffspeicherung in mikroporösen metall-organischen gerüsten mit koordinativ unges ttigten metallzentren. Angew Chem Int Ed, 2008, 120: 6870–6884

    Article  Google Scholar 

  27. Luo TT, Tsai HL, Yang SL, Liu YH, Yadav RD, Su CC, Ueng CH, Lin LG, Lu KL. Crystal engineering: Toward intersecting channels from a neutral network with a bcu-type topology. Angew Chem Int Ed, 2005, 44: 6063–6067

    Article  CAS  Google Scholar 

  28. Jiang JJ, Yang R, Xiong Y, Li L, Pan M, Su CY. Porous zinc(II)-organic frmawork with potential openmetal sites: synthesis, structure and property. Sci China Chem, 2011, 9: 1436–1440

    Article  Google Scholar 

  29. Zhong DC, Lu TB. Porous coordination polymers based on three planar rigid ligands. Sci China Chem, 2011, 9: 1395–1406

    Article  Google Scholar 

  30. Li HH, Niu Z, Han T, Zhang ZJ, Shi W, Cheng P. A microporous lanthanide metal-organic framework containing channels: synthesis, structure, gas adsorption and magnetic properties. Sci China Chem, 2011, 9: 1423–1429

    Article  Google Scholar 

  31. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev, 2005, 34: 109–119

    Article  CAS  Google Scholar 

  32. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev, 2005, 34: 109–119

    Article  CAS  Google Scholar 

  33. Vittal JJ. Supramolecular structural transformations involving coordination polymers in the solid state. Coord Chem Rev, 2007, 251: 1781–1795

    Article  CAS  Google Scholar 

  34. Carlucci L, Ciani G, Moret M, Proserpio DM, Rizzato S. Polymeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture: a nanoporous network with spongelike behavior. Angew Chem Int Ed, 2000, 39: 1506–1510

    Article  CAS  Google Scholar 

  35. Kepert CJ, Hesek D, Beer PD, Rosseinsky MJ. Desolvation of a novel microporous hydrogen-bonded framework: characterization by in situ single-crystal and powder X-ray diffraction. Angew Chem Int Ed, 1998, 37: 3158–3160

    Article  CAS  Google Scholar 

  36. Chen CL, Goforth AM, Smith MD, Su CY, zur Loye HC. [Co2(ppca)2(H2O)(V4O12)0.5]: A framework material exhibiting reversible shrinkage and expansion through a single-crystal-to-single-crystal transformation involving a change in the cobalt coordination environment. Angew Chem Int Ed, 2005, 44: 6673–6677

    Article  CAS  Google Scholar 

  37. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD. Guest-dependent spin crossover in a nanoporous molecular framework material. Science, 2002, 298: 1762–1765

    Article  CAS  Google Scholar 

  38. Suh MP, Ko JW, Choi HJ. A metalorganic bilayer open framework with a dynamic component: single-crystal-to-single-crystal transformations. J Am Chem Soc, 2002, 124: 10976–10977

    Article  CAS  Google Scholar 

  39. Dybtsev DN, Chun H, Kim K. Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed, 2004, 116: 5143–5146

    Article  Google Scholar 

  40. Ghosh SK, Bureekaew S, Kitagawa S. A dynamic, isocyanurate-functionalized porous coordination polymer. Angew Chem Int Ed, 2008, 120: 3451–3454

    Article  Google Scholar 

  41. Ghosh SK, Zhang JP, Kitagawa S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew Chem Int Ed, 2007, 46: 7965–7968

    Article  CAS  Google Scholar 

  42. Maji TK, Uemura K, Chang HC, Matsuda R, Kitagawa S. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. Angew Chem Int Ed, 2004, 116: 3331–3334

    Article  Google Scholar 

  43. Cheng XN, Zhang WX, Chen XM. Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer. J Am Chem Soc, 2007, 129: 15738–15739

    Article  CAS  Google Scholar 

  44. Zhang JP, Lin YY, Zhang WX, Chen XM. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J Am Chem Soc, 2005, 127: 14162–14163

    Article  CAS  Google Scholar 

  45. Biradha K, Fujita M. A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew Chem Int Ed, 2002, 114: 3542–3545

    Article  Google Scholar 

  46. Luo TT, Hsu LY, Su CC, Ueng CH, Tsai TC, Lu KL. Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle. Inorg Chem, 2007, 46: 1532–1534

    Article  CAS  Google Scholar 

  47. Chen CY, Cheng PY, Wu HH, Lee HM. Conformational effect of 2,6-bis(imidazol-1-yl)pyridine on the self-assembly of 1D coordination chains: spontaneous resolution, supramolecular somerism, and structural transformation. Inorg Chem, 2007, 46: 5691–5699

    Article  CAS  Google Scholar 

  48. Sun R, Li YZ, Bai J, Pan Y. Synthesis, structure, water-induced reversible crystal-to-amorphous transformation, and luminescence properties of novel cationic spacer-filled 3D transition metal supramolecular frameworks from N,N′,N″-tris (carboxymethyl)-1,3,5-benzenetri carboxamide. Cryst Growth Des, 2007, 7: 890–894

    Article  CAS  Google Scholar 

  49. Jung OS, Kim YJ, Lee YA, Park JK, Chae HK. Smart molecular helical springs as tunable receptors. J Am Chem Soc, 2000, 122: 9921–9925

    Article  CAS  Google Scholar 

  50. Jung OS, Kim YJ, Lee YA, Chae HK, Jang HG, Hong J. Structures and related properties of AgX bearing 3,3′-thiobispyridine (X = NO3 , BF4 , ClO4 , and PF6 ). Inorg Chem, 2001, 40: 2105–2110

    Article  CAS  Google Scholar 

  51. Min KS, Suh MP. Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J Am Chem Soc, 2000, 122: 6834–6840

    Article  CAS  Google Scholar 

  52. Luo TT, Liu YH, Chan CC, Huang SM, Chang BC, Lu YL, Lee GH, Peng SM, Wang JC, Lu KL. Toward quartz and cristobalite: Spontaneous resolution, structures, and characterization of chiral silica-mimetic silver(I)-organic materials. Inorg Chem, 2007, 46: 10044–10046

    Article  CAS  Google Scholar 

  53. Nagarathinam M, Vittal JJ. Photochemical [2 + 2] cycloaddition as a tool to study a solid-state structural transformation. Chem Commun, 2008, 438–440

    Google Scholar 

  54. Nagarathinam M, Vittal JJ. Anisotropic movements of coordination polymers upon desolvation: solid-state transformation of a linear 1D coordination polymer to a ladderlike Structure. Angew Chem Int Ed, 2006, 45: 4337–4341

    Article  CAS  Google Scholar 

  55. Toh NL, Nagarathinam M, Vittal JJ. Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through single-crystal to single-crystal transformation. Angew Chem Int Ed, 2005, 117: 2277–2281

    Article  Google Scholar 

  56. Chu Q, Swenson DC, MacGillivray LR. A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew Chem Int Ed, 2005, 117: 3635–3638

    Article  Google Scholar 

  57. Papaefstathiou GS, Zhong Z, Geng L, MacGillivray LR. Coordination-driven self-assembly directs a single-crystal-to-single-crystal transformation that exhibits photocontrolled fluorescence. J Am Chem Soc, 2004, 126: 9158–9159

    Article  CAS  Google Scholar 

  58. Michaelides A, Skoulika S, Siskos MG. Assembly of a photoreactive coordination polymer containing rectangular grids. Chem Commun, 2004, 2418

    Google Scholar 

  59. Mal NK, Fujiware M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421: 350

    Article  CAS  Google Scholar 

  60. Hu C, Englert U. Space filling versus symmetry: two consecutive crystal-to-crystal phase transitions in a 2D network. Angew Chem Int Ed, 2006, 45: 3457–3459

    Article  CAS  Google Scholar 

  61. Hu C, Englert U. Crystal-to-crystal transformation from a chain polymer to a two-dimensional network at low temperatures. Angew Chem Int Ed, 2005, 44: 2281–2283

    Article  CAS  Google Scholar 

  62. Ranford JD, Vittal JJ, Wu D, Yang X. Thermal conversion of a helical coil into a three-dimensional chiral framework. Angew Chem Int Ed, 1999, 38: 3498–3501

    Article  CAS  Google Scholar 

  63. Ranford JD, Vittal JJ, Wu D. Topo chemical conversion of a hydrogen-bonded three-dimensional network into a covalently bonded framework. Angew Chem Int Ed, 1998, 37: 1114–1116

    Article  CAS  Google Scholar 

  64. Vittal JJ, Yang X. Interconvertible supramolecular transformations. Cryst Growth Des, 2002, 2: 259–262

    Article  CAS  Google Scholar 

  65. Rather B, Moulton B, Walsh RDB, Zaworotko MJ. A new supramolecular isomer of [Zn(nicotinate)2]n: a novel 42.84 network that is the result of self-assembly of 4-connected nodes. Chem Commun, 2002, 694–695

    Google Scholar 

  66. Mahmoudi G. Morsali A. Crystal-to-crystal transformation from a weak hydrogen-bonded two-dimensional network structure to a two-dimensional coordination polymer on heating. Cryst Growth Des, 2008, 8: 391–394

    Article  CAS  Google Scholar 

  67. Legrand YM, van der Lee A, Masquelez N, Rabu P, Barboiu M. Temperature induced single-crystal-to-single-crystal transformations and structure directed effects on magnetic properties. Inorg Chem, 2007, 46: 9083–9089

    Article  CAS  Google Scholar 

  68. Ding N, Kanatzidis MG. Acid-induced conversions in open-framework semiconductors: from [Cd4Sn3Se13]6− to [Cd15Sn12Se46]14−, a remarkable disassembly/reassembly process. Angew Chem Int Ed, 2006, 45: 1397–1401

    Article  CAS  Google Scholar 

  69. Leung KCF, Mendes PM, Magonov SN, Northrop BH, Kim S, Patel K, Flood AH, Tseng HR, Stoddart JF. Supramolecular self-assembly of dendronized polymers: reversible control of the polymer architectures through acid-base reactions. J Am Chem Soc, 2006, 128: 10707–10715

    Article  CAS  Google Scholar 

  70. Friese VA, Kurth DG. Soluble dynamic coordination polymers as a paradigm for materials science. Coord Chem Rev, 2008, 252: 199–211

    Article  CAS  Google Scholar 

  71. Karabach YY, Kirillov AM, da Silva MFCG, Kopylovich MN, Pombeiro AJL. An aqua-soluble copper(II)-sodium two-dimensional coordination polymer with intercalated infinite chains of decameric water clusters. Cryst Growth Des, 2006, 6: 2200–2203

    Article  CAS  Google Scholar 

  72. Zhang JJ, Zhao Y, Gamboa SA, Lachgar A. Metal-ligand directed assembly of layered cluster-based coordination polymer and its solvent-mediated structural transformations. Cryst Growth Des, 2008, 8: 172–175

    Article  CAS  Google Scholar 

  73. Wu JY, Ding MT, Wen YS, Liu YH, Lu KL. Alkali metal cation (K+, Cs+) induced dissolution/reorganization of porous metal carboxylate coordination networks in water. Chem Eu J, 2009, 15: 3604–3614

    Article  CAS  Google Scholar 

  74. Dong YB, Smith MD, zur Loye HC. Metal-containing ligands for mixed-metal polymers: novel Cu(II)·Ag(I) mixed-metal coordination polymers generated from [Cu(2-methylpyrazine-5-carboxylate)2-(H2O)]·3H2O and silver(I) salts. Inorg Chem, 2000, 39: 1943–1949

    Article  CAS  Google Scholar 

  75. Bruker AXS, SMART, Version 5.0, Bruker AXS, Madison, WI, USA, 1998

  76. Bruker AXS, SAINT-PLUS, Version 6.0, Bruker AXS, Madison, WI, USA, 1999

  77. Blessing RH. An empirical correction for absorption anisotropy. Acta Crystallogr Sect A, 1995, 51: 33–38

    Article  Google Scholar 

  78. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  79. Bersuker IB. Modern aspects of the jahn-teller effect theory and applications to molecular problems. Chem Rev, 2001, 101: 1067–1114

    Article  CAS  Google Scholar 

  80. Sereda O, Stoeckli-Evans H, Dolomanov O, Filinchuk Y, Pattison P. Transformation of a chiral nanoporous bimetallic cyano-bridged framework triggered by dehydration/rehydration. Cryst Growth Des, 2009, 9: 3168–3176

    Article  CAS  Google Scholar 

  81. Berthet JC, Siffredi G, Thuéry P, Ephritikhine M. Easy access to stable pentavalent uranyl complexes. Chem Commun, 2006, 3184–3168

    Google Scholar 

  82. Natrajan L, Burdet F, Pécaut J, Mazzanti M. Synthesis and structure of a stable pentavalent-uranyl coordination polymer. J Am Chem Soc, 2006, 128: 7152–7153

    Article  CAS  Google Scholar 

  83. Cunningham D, McArdle P, Mitchell M, Chonchubhair NN, O’Gara M, Franceschi F, Floriani C. Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 1. Structures and magnetic properties of two novel dinuclear complexes with a μ-phenolato-μ-oximato (Cu,Gd) core. Inorg Chem, 2000, 39: 169–173

    Article  Google Scholar 

  84. Weiss E. Structures of organo alkali metal complexes and related compounds. Angew Chem Int Ed, 1993, 32: 1501–1523

    Article  Google Scholar 

  85. Ma JC, Dougherty DA. The cation-π interaction. Chem Rev, 1997, 97: 1303–1324

    Article  CAS  Google Scholar 

  86. Cingolani A, Galli S, Masciocchi N, Pandolfo L, Pettinari C, Sironi A. Sorption-desorption behavior of bispyrazolato-copper(II) 1D coordination polymers. J Am Chem Soc, 2005, 127: 6144–6155

    Article  CAS  Google Scholar 

  87. Aronica C, Pilet G, Chastanet G, Wernsdorfer W, Jacquot JF, Luneau D. A nonanuclear dysprosium(III)-copper(II) complex exhibiting single-molecule magnet behavior with very slow zero-field relaxation. Angew Chem Int Ed, 2006, 45: 4659–4662

    Article  CAS  Google Scholar 

  88. Arom G, Ribas J, Gamez P, Roubeau O, Kooijman H, Spek AL, Teat S, MacLean E, Helen SE, Reedijk J. Aggregation of [Cu4 II] building blocks into [Cu8 II] clusters or a [Cu4 II] chain through subtle chemical control. Chem Eur J, 2004, 10: 6476–6488

    Article  Google Scholar 

  89. Ambrosi G, Formica M, Fusi V, Giorgi L, Guerri A, Lucarini S, Micheloni M, Paoli P, Rossi P, Zappia G. Coordination behavior toward copper(II) and zinc(II) ions of three ligands joining 3-hydroxy-2-pyridinone and polyaza fragments. Inorg Chem, 2005, 44: 3249–3260

    Article  CAS  Google Scholar 

  90. Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Kobayashi T, Horike S, Takata M. Guest shape-responsive fitting of porous coordination polymer with shrinkable framework. J Am Chem Soc, 2004, 126: 14063–14070

    Article  CAS  Google Scholar 

  91. Chui SSY, Lo SMF, Charmant PH, Orpen AG, Williams LD. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283: 1148–1150

    Article  CAS  Google Scholar 

  92. Noro SI, Kitaura R, Kondo M, Kitagawa S, Ishii T, Matsuzaka H, Yamashita M. Framework engineering by anions and porous functionalities of Cu(II)/4,4′-bpy coordination polymers. J Am Chem Soc, 2002, 124: 2568–2583

    Article  CAS  Google Scholar 

  93. Paraschiv C, Andruh M, Ferlay S, Hosseini M, Kyritsakas N, Planeix JM, Stanica N. Alkoxo-bridged copper(II) complexes as nodes in designing solid-state architectures. The interplay of coordinative and d10-d10 metal-metal interactions in sustaining supramolecular solid-state architectures. Dalton Trans, 2005, 1195–1202

    Google Scholar 

  94. Bu XH, Tong ML, Xie YB, Li JR, Chang HC, Kitagawa S, Ribas J. Synthesis, structures, and magnetic properties of the copper(II), cobalt(II), and manganese(II) complexes with 9-acridinecarboxylate and 4-quinolinecarboxylate ligands. Inorg Chem, 2005, 44: 9837–9846

    Article  CAS  Google Scholar 

  95. Goher MAS, Mautner FA. 1D polymeric copper(II) azido complexes, synthesis, spectral and structural studies of [Cu(ethyl isonicotinate)2(N3)2]n and [Cu(methyl isonicotinate)2(NO3)(N3)]n complexes. Transition Met Chem, 1999, 24: 454–458

    Article  CAS  Google Scholar 

  96. Vogler A, Kunkely H. Photochemistry of peroxo complexes induced by LMCT, MLCT and peroxide IL/LLCT excitation. Coord Chem Rev, 2006, 250: 1622–1626

    Article  CAS  Google Scholar 

  97. Cui YJ, Yue YF, Qian GD, Chen BL. Luminescent functional metal-organic frameworks. Chem Rev, 2012, 112: 1126–1162

    Article  CAS  Google Scholar 

  98. Allendorf MD, Bauer CA, Bhaktaa RK, Houka RJT. Luminescent metal-organic frameworks. Chem Soc Rev, 2009, 38: 1330–1352

    Article  CAS  Google Scholar 

  99. Yam VWW. Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: structural and photophysical aspects. Acc Chem Res, 2002, 35: 555–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wei or SanPing Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wei, Q., Liu, X. et al. Water-induced reversible dissolution/reorganization transformations of Cu(II)-K(I) heterometallic coordination polymers. Sci. China Chem. 57, 1225–1234 (2014). https://doi.org/10.1007/s11426-014-5070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5070-6

Keywords

Navigation