Skip to main content
Log in

Highly oxidized graphene with enhanced fluorescence and its direct fluorescence visualization

  • Articles
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We prepared hyper-oxidized graphene (HOG) as a form of graphene derivative by additional oxidation of graphene oxide (GO) sheets. HOG, which formed more functional groups and isolated conjugated clusters on the sheets, accordingly showed high solubility in water and alcohols, high transmittance and film transparence, longer fluorescence decay constant time, and enhanced fluorescence in states of solution and solid. By contrast, GO has much weaker fluorescence in solution and its fluorescence is totally quenched in solid. The influences of concentration, metallic ions, and pH on HOG fluorescence in aqueous solution were also investigated in detail. Due to HOG’s strong fluorescence, direct visualization was realized on substrates and in solution. In addition, direct 3D fluorescence visualizations of HOG phase in polymer composites were achieved. These results show the great potential of HOG in a broad range of applications, from biological labeling, probes, and drug carriers to high-performance composites and nanomanipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refereces

  1. Geim AK. Graphene: Status and prospects. Science, 2009, 324: 1530–1534

    Article  CAS  Google Scholar 

  2. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132–145

    Article  CAS  Google Scholar 

  3. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240

    Article  CAS  Google Scholar 

  4. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res, 2008, 1: 203–212

    Article  CAS  Google Scholar 

  5. Liu Z, Robinson JT, Sun XM, Dai HJ. Pegylated nano-graphene oxide for delivery of insoluble cancer drugs. J Am Chem Soc, 2008, 130: 10876–10877

    Article  CAS  Google Scholar 

  6. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M. Blue photoluminescence from chemically derived graphene oxide. Adv Mater, 2010, 22: 505–509

    Article  CAS  Google Scholar 

  7. Gokus T, Nair RR, Bonetti A, Böhmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A. Making graphene luminescent by oxygen plasma treatment. ACS Nano, 2009, 3: 3963–3968

    Article  CAS  Google Scholar 

  8. Treossi E, Melucci M, Liscio A, Gazzano M, Samor P. Palermo V. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J Am Chem Soc, 2009, 131: 15576–15577

    Article  CAS  Google Scholar 

  9. Kim J, Cote LJ, Kim F, Huang JX. Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc, 2009, 132: 260–267

    Article  CAS  Google Scholar 

  10. Luo ZT, Vora PM, Mele EJ, Charlie-Johnson AT, Kikkawa JM. Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett, 2009, 94: 111909–111911

    Article  CAS  Google Scholar 

  11. Sun YQ, Wang SQ, Li C, Luo PH, Tao L, Wei Y, Shi GQ. Large scale preparation of graphene quantum dots from graphite with tunable fluorescent properties. Phys Chem Chem Phys, 2013, 15: 9907–9913

    Article  CAS  Google Scholar 

  12. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355

    Article  CAS  Google Scholar 

  13. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24: 10560–10564

    Article  CAS  Google Scholar 

  14. Li Z, Zhang WH, Luo Y, Yang JL, Hou JG. How graphene is cut upon oxidation? J Am Chem Soc, 2009, 131: 6320–6321

    Article  CAS  Google Scholar 

  15. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B, 1998, 102: 4477–4482

    Article  CAS  Google Scholar 

  16. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater, 2006, 18: 2740–2749

    Article  CAS  Google Scholar 

  17. Cai WW, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishiii Y, Yang DX, Velamakanni A, An AJ, Stoller M, An J, Chen DM, Ruoff RS. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 2008, 321: 1815–1817

    Article  CAS  Google Scholar 

  18. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem, 2009, 1: 403–408

    Article  CAS  Google Scholar 

  19. Nemanich RJ, Solin SA. First and second-order raman scattering from finite-size crystals of graphite. Phys Rev B, 1979, 20: 392–401

    Article  CAS  Google Scholar 

  20. Ferrari AC, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B, 2000, 61: 14095–14107

    Article  CAS  Google Scholar 

  21. Chen CW, Robertson J. Nature of disorder and localization in amorphous carbon. J Non-Cryst Solids, 1998, 227: 602–606

    Article  Google Scholar 

  22. Mathioudakis C, Kopidakis G, Kelires PC, Patsalas P, Gioti M, Logothetidis S. Electronic and optical properties of a-c from tight-binding molecular dynamics simulations. Thin Solid Films, 2005, 482: 151–155

    Article  CAS  Google Scholar 

  23. Robertson J, O’Reilly EP. Electronic and atomic structure of amorphous carbon. Phys Rev B, 1987, 35: 2946–2957

    Article  CAS  Google Scholar 

  24. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008, 3: 101–105

    Article  CAS  Google Scholar 

  25. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593–596

    Article  Google Scholar 

  26. Kamat PV, Patrick B. Photophysics and photochemistry of quantized ZnO colloids. J Phys Chem, 1992, 96: 6829–6834

    Article  CAS  Google Scholar 

  27. Medintz IL, Uyeda HT, Goldamn ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005, 4: 435–446

    Article  CAS  Google Scholar 

  28. Yao N, Wang ZL. Handbook of Microscopy for Nanotechnology, Part 1. Beijing: Tsinghua University Press, 2006

    Google Scholar 

  29. Stankovich S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 2006, 442: 282–286

    Article  CAS  Google Scholar 

  30. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol, 2008, 3: 327–331

    Article  CAS  Google Scholar 

  31. Liang JL, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen YS. Molecular-level dispersion of graphene into poly(vinyl alcohol), and effective reinforcement of their nanocomposites. Adv Funct Mater, 2009, 19: 2297–2302

    Article  CAS  Google Scholar 

  32. Fang M, Wang KG, Lu HB, Yang YL, Nutt S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem, 2009, 19: 7098–7105

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339

    Article  CAS  Google Scholar 

  34. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets. Chem Mater, 1999, 11: 771–778

    Article  CAS  Google Scholar 

  35. Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano, 2011, 5: 2908–2915

    Article  CAS  Google Scholar 

  36. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2012, 2: 571

    Article  CAS  Google Scholar 

  37. Xu Z, Sun HY, Zhao XL, Gao C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater, 2013, 25: 188–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, Z., Xu, Z. & Gao, C. Highly oxidized graphene with enhanced fluorescence and its direct fluorescence visualization. Sci. China Chem. 57, 605–614 (2014). https://doi.org/10.1007/s11426-013-5060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5060-0

Keywords

Navigation