Skip to main content
Log in

Chiral polymer-based biointerface materials

  • Reviews
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological processes, which provides much inspiration for scientists to develop chiral materials. As a breakthrough from traditional materials, biointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials elegantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the investigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue engineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent advances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barron LD. Chemistry: chirality, magnetism and light. Nature, 2000, 405: 895–896

    Article  CAS  Google Scholar 

  2. Barron LD. Chirality and life. Space Sci Rev, 2008, 135: 187–201

    Article  CAS  Google Scholar 

  3. Hein JE, Blackmond DG. On the origin of single chirality of amino acids and sugars in biogenesis. Acc Chem Res, 2012, 45: 2045–2054

    Article  CAS  Google Scholar 

  4. Bentley R. Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev, 2005, 34: 609–624

    Article  CAS  Google Scholar 

  5. Sun TL, Qing GY, Su BL, Jiang L. Functional biointerface materials inspired from nature. Chem Soc Rev, 2011, 40: 2909–2921

    Article  CAS  Google Scholar 

  6. Tonzani S. Polymers for biomedical applications. J Appl Polym Sci, 2013, 129: 527

    Article  CAS  Google Scholar 

  7. Somorjai GA, Frei H, Park JY. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc, 2009, 131: 16589–16605

    Article  CAS  Google Scholar 

  8. Zhang MX, Qing GY, Sun TL. Chiral biointerface materials. Chem Soc Rev, 2012, 41: 1972–1984

    Article  CAS  Google Scholar 

  9. Wang X, Gan H, Sun TL, Su BL, Fuchs H, Vestweber D, Butz S. Stereochemistry triggered differential cell behaviours on chiral polymer surfaces. Soft Matter, 2010, 6: 3851–3855

    Article  CAS  Google Scholar 

  10. Yi QY, Wen XT, Li L, He B, Nie Y, Wu Y, Zhang ZR, Gu ZW. The chiral effects on the responses of osteoblastic cells to the polymeric substrates. Eur Polym J, 2009, 45: 1970–1978

    Article  CAS  Google Scholar 

  11. Wang X, Gan H, Sun TL. Chiral design for polymeric biointerface: the influence of surface chirality on protein adsorption. Adv Funct Mater, 2011, 21: 3276–3281

    Article  CAS  Google Scholar 

  12. Shundo A, Hori K, Ikeda T, Kimizuka N, Tanaka K. Design of a dynamic polymer interface for chiral discrimination. J Am Chem Soc, 2013, 135: 10282–10285

    Article  CAS  Google Scholar 

  13. Miyake GM, DiRocco DA, Liu Q, Oberg KM, Bayram E, Finke RG, Rovis T, Chen EY-X. Stereospecific polymerization of chiral oxazolidinonefunctionalized alkenes. Macromolecules, 2010, 43: 7504–7514

    Article  CAS  Google Scholar 

  14. Zhi JG, Guan Y, Cui JX, Liu AH, Zhu ZG, Wan XH, Zhou QF. Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. J Polym Sci A: Polym Chem, 2009, 47: 2408–2421

    Article  CAS  Google Scholar 

  15. Hoshikawa N, Yamamoto C, Hotta Y, Okamoto Y. Helix-senseselective radical polymerization of N-(triphenylmethyl) methacrylamides and properties of the polymers. Polym J, 2006, 38: 1258–1266

    Article  CAS  Google Scholar 

  16. Choe UJ, Sun VZ, Tan JKY, Kamei, DT. Self-assembled polypeptide and polypeptide hybrid vesicles: from synthesis to application. Top Curr Chem, 2012, 310: 117–134

    Article  CAS  Google Scholar 

  17. Cai CH, Wang LQ, Lin JP. Self-assembly of polypeptide-based copolymers into diverse aggregates. Chem Commun, 2011, 47: 11189–11203

    Article  CAS  Google Scholar 

  18. Coates GW, Waymouth RM. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J Am Chem Soc, 1993, 115: 91–98

    Article  CAS  Google Scholar 

  19. Itsuno S. Chiral polymer synthesis by means of repeated asymmetric reaction. Prog Polym Sci, 2005, 30: 540–558

    Article  CAS  Google Scholar 

  20. Haraquchi N, Kiyono H, Takemura Y, Itsuno S. Design of mainchain polymers of chiral imidazolidinone for asymmetric organocatalysis application. Chem Commun, 2012, 48: 4011–4013

    Article  CAS  Google Scholar 

  21. Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J Am Chem Soc, 1979, 101: 4763–4765

    Article  CAS  Google Scholar 

  22. Yamamoto T, Suginome M, Helical poly(quinoxaline-2,3-diyl)s bearing metal-binding sites as polymer-based chiral ligands for asymmetric catalysis. Angew Chem Int Ed, 2009, 48: 539–542

    Article  CAS  Google Scholar 

  23. Furumi S. Self-assembled organic and polymer photonic crystals for laser applications. Polym J. 2013, 45: 579–593

    Article  CAS  Google Scholar 

  24. Shiraki T, Dawn A, Tsuchiya Y, Shinkai S. Thermo- and solventresponsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. J Am Chem Soc, 2010, 132: 13928–13935

    Article  CAS  Google Scholar 

  25. Cao HQ, Cui JX, Liu AH, Wan XH. Synthesis and helix-senseselective polymerization of chiral vinyl biphenyl monomers. Acta Polym Sin, 2010: 222–230

    Google Scholar 

  26. Bag DS, Dutta D, Shami TC, Bhasker Bro KU. Synthesis and characterization of l-leucine containing chiral vinyl monomer and its polymer, poly(2-(methacryloyloxyamino)-4-methyl pentanoic acid). J Ploym Sci Part A Polym Chem, 2009, 47: 2228–2242

    Article  CAS  Google Scholar 

  27. Wang X, Gan H, Zhang MX, Sun TL. Modulating cell behaviours on chiral polymer brush films with different hydrophobic side groups. Langmuir, 2012, 28: 2791–2798

    Article  CAS  Google Scholar 

  28. Zhang MX, Qing GY, Xiong CL, Cui R, Pang DW, Sun TL. Dualresponsive gold nanoparticles for colorimetric recognition and testing of carbohydrates with a dispersion-dominated chromogenic process. Adv Mater, 2013, 25: 749–754

    Article  CAS  Google Scholar 

  29. Li Z, Köwitsch A, Zhou G, Groth T, Fuhrmann B, Niepel M, Amado E, Kressler J. Enantiopure chiral poly(glycerol methacrylate) self-assembled monolayers knock down protein adsorption and cell adhesion. Adv Healthcare Mater, 2013, 2: 1377–1387

    Article  CAS  Google Scholar 

  30. Gualandi C, Vo CD, Focarete ML, Scandola M, Pollicino A, Di Silvestro G, Tirelli N. Advantages of surface-initiated ATRP (SI-ATRP) for the functionalization of electrospun materials. Macromol Rapid Commun, 2013, 34: 51–56

    Article  CAS  Google Scholar 

  31. Wei QB, Wang XL, Zhou F. A versatile macro-initiator with dual functional anchoring groups for surface-initiated atom transfer radical polymerization on various substrates. Polym Chem, 2012, 3: 2129–2137

    Article  CAS  Google Scholar 

  32. Wang HS, Peng JT, Wei JP, Jiang A. Synthesis of novel chiral stationary phase based on atom transfer radical polymerization and click chemistry. Acta Chim Sinica, 2012, 70: 1355–1361

    Article  CAS  Google Scholar 

  33. Palermo V, Morelli S, Simpson C, Müllen K, Samorì P. Self-organized nanofibers from a giant nanographene: effect of solvent and deposition method. J Mater Chem, 2006, 16: 266–271

    Article  CAS  Google Scholar 

  34. Okamoto Y. Chiral polymers for resolution of enantiomers. J Polym Sci Part A: Polym Chem, 2009, 47: 1731–1739

    Article  CAS  Google Scholar 

  35. Suárez-Suárez S, Carriedo GA, Tarazona MP, Soto AP. Twisted morphologies and novel chiral macroporous films from the self-assembly of optically active helical polyphosphazene block copolymers. Chem Eur J, 2013, 19: 5644–5653

    Article  CAS  Google Scholar 

  36. Saxena A, Guo GQ, Fujiki M, Yang YG, Ohira A, Okoshi K, Naito M. Helical polymer command surface: thermodriven chiroptical transfer and amplification in binary polysilane film system. Macromolecules, 2004, 37: 3081–3083

    Article  CAS  Google Scholar 

  37. Minich EA, Nowak AP, Deming TJ, Pochan DJ. Rod-rod and rod-coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer, 2004, 45: 1951–1957

    Article  CAS  Google Scholar 

  38. Ohira A, Okoshi K, Fujiki M, Kunitake M, Naito M, Hagihara T. Versatile helical polymer films: chiroptical inversion switching and memory with re-writable (RW) and write-once read-many (WORM) modes. Adv Mater, 2004, 16: 1645–1650

    Article  CAS  Google Scholar 

  39. Li WG, Wang HL. Electrochemical synthesis of optically active polyaniline films. Adv Funct Mater, 2005, 15: 1793–1798

    Article  CAS  Google Scholar 

  40. Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425: 490–493

    Article  CAS  Google Scholar 

  41. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J Royal Soc Interface, 2010, 7: S581–S613

    Article  CAS  Google Scholar 

  42. Wang Y, Pang X, Zhitomirsky I. Electrophoretic deposition of chiral polymers and composites. Colloids Surf B Biointerfaces, 2011, 87: 505–509

    Article  CAS  Google Scholar 

  43. Thevenot P, Hu WJ, Tang LP. Surface chemistry influences implant biocompatibility. Curr Top Med Chem, 2008, 8: 270–280

    Article  CAS  Google Scholar 

  44. Bai CL, Liu MH. Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 2012, 7: 258–281

    Article  CAS  Google Scholar 

  45. Pasparakis G, Cockayne A, Alexander C. Control of bacterial aggregation by thermoresponsive glycopolymers. J Am Chem Soc, 2007, 129: 11014–11015

    Article  CAS  Google Scholar 

  46. Chen L, Liu MJ, Bai H, Chen PP, Xia F, Han D, Jiang L. Antiplatelet and thermally responsive poly(n-isopropylacrylamide) surface with nanoscale topography. J Am Chem Soc, 2009, 131: 10467–10472

    Article  CAS  Google Scholar 

  47. Sun TL, Qing GY. Biomimetic smart interface materials for biological applications. Adv Mater, 2011, 23: H57–H77

    Article  CAS  Google Scholar 

  48. Sun TL, Han D, Rhemann K, Chi LF, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. J Am Chem Soc, 2007, 129: 1496–1497

    Article  CAS  Google Scholar 

  49. Gan H, Tang KJ, Sun TL, Hirtz M, Li Y, Chi LF, Butz S, Fuchs H. Selective adsorption of DNA on chiral surfaces: supercoiled or relaxed conformation. Angew Chem Int Ed, 2009, 48: 5282–5286

    Article  CAS  Google Scholar 

  50. Wang LL, Fu YZ, Zhou J, Chen Q. Stereoselective interaction between DNA and stable chiral surfaces modified with 1,2-diphenylethylenediamine enantiomers. Electroanalysis, 2011, 23: 529–535

    Article  CAS  Google Scholar 

  51. Hanein D, Geiger B, Addadi L. Differential adhesion of cells to enantiomorphous crystal surfaces. Science, 1994, 263: 1413–1416

    Article  CAS  Google Scholar 

  52. Ei-Gindi J, Benson K, De Cola L, Galla HJ, Kehr NS. Cell adhesion behavior on enantiomerically functionalized zeolite L monolayers. Angew Chem Int Ed, 2012, 51: 3716–3720

    Article  CAS  Google Scholar 

  53. Kawai F. Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. Appl Microbiol Biotechnol, 2006, 72: 244–251

    Article  CAS  Google Scholar 

  54. Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int, 2007, 56: 145–157

    Article  CAS  Google Scholar 

  55. Chen H, Yuan L, Song W, Wu ZK, Li D. Biocompatible polymer materials: role of protein-surface interactions. Prog Polym Sci, 2008, 33: 1059–1087

    Article  CAS  Google Scholar 

  56. Keller K, Amirian A, Akcora P. Elastic properties of a protein-polymer-grafted surface. Langmuir, 2012, 28: 3807–3813

    Article  CAS  Google Scholar 

  57. Humblot V, Pradier CM. Chiral recognition of l-gramicidine on chiraly methionine-modified Au(111). J Phys Chem Lett, 2013, 4: 1816–1820

    Article  CAS  Google Scholar 

  58. Hucknall A, Rangarajan S, Chilkoti A. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater, 2009, 21: 2441–2446

    Article  CAS  Google Scholar 

  59. Ayres N. Polymer brushes: applications in biomaterials and nanotechnology. Polym Chem, 2010, 1: 769–777

    Article  CAS  Google Scholar 

  60. Zhou F, Yuan L, Li D, Huang H, Sun TL, Chen H. Cell adhesion on chiral surface: the role of protein adsorption. Colloids Surf B Biointerfaces, 2012, 90: 97–101

    Article  CAS  Google Scholar 

  61. Tang ZC, Li D, Wu ZQ, Liu W, Brash JL, Chen H. Vinyl-monomer with lysine side chains for preparing copolymer surfaces with fibrinolytic activity. Polym Chem, 2013, 4: 1583–1589

    Article  CAS  Google Scholar 

  62. Huang J, Egan VM, Guo H, Yoon JY, Briseno AL, Rauda IE, Garrell RL, Knobler CM, Zhou F, Kaner RB. Enantioselective discrimination of d- and l-phenylalanine by chiral polyaniline thin films. Adv Mater, 2003, 15: 1158–1161

    Article  CAS  Google Scholar 

  63. Ho RM, Li MC, Lin SC, Wang HF, Lee YD, Hasegawa H, Thomas EL. Transfer of chirality from molecule to phase in self-assembled chiral block copolymers. J Am Chem Soc, 2012, 134: 10974–10986

    Article  CAS  Google Scholar 

  64. Qing GY, Sun TL. The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Materials, 2012, e4

    Google Scholar 

  65. Yao X, Song YL, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater, 2011, 23: 719–734

    Article  CAS  Google Scholar 

  66. Jin X, Yang S, Li Z, Liu KS, Jiang L. Bio-inspired special wetting surfaces via self-assembly. Sci China Chem, 2012, 55: 2327–2333

    Article  CAS  Google Scholar 

  67. Qing GY, Sun TL. Chirality triggered wettability switching on smart polymer surface. Adv Mater, 2011, 23: 1615–1620

    Article  CAS  Google Scholar 

  68. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284: 1318–1322

    Article  CAS  Google Scholar 

  69. Ma CF, Yang HJ, Zhou X, Wu B, Zhang GZ. Polymeric material for anti-biofouling. Colloids Surf B Biointerface, 2012, 100: 31–35

    Article  CAS  Google Scholar 

  70. Kirschner CM, Brennan AB. Bio-inspired antifouling strategies. Annu Rev Mater Res, 2012, 42: 211–229

    Article  CAS  Google Scholar 

  71. Hong F, Xie LY, He CX, Liu JH, Zhang GZ, Wu C. Effects of hydrolyzable comonomer and cross-linking on anti-biofouling terpolymer coatings. Polymer, 2013, 54: 2966–2972

    Article  CAS  Google Scholar 

  72. Bandyopadhyay D, Prashar D, Luk YY. Stereochemical effects of chiral monolayers on enhancing the resistance to mammalian cell adhesion. Chem Commun, 2011, 47: 6165–6167

    Article  CAS  Google Scholar 

  73. Bandyopadhyay D, Prashar D, Luk YY. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface. Langmuir, 2011, 27: 6124–6131

    Article  CAS  Google Scholar 

  74. Khan M, Viswanathan B, Rao DS, Reddy R. Chiral separation of Frovatriptan isomers by HPLC using amylose based chiral stationary phase. J Chromatogr B, 2007, 846: 119–123

    Article  CAS  Google Scholar 

  75. Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev, 2008, 37: 2593–2608

    Article  CAS  Google Scholar 

  76. Ikai T, Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev, 2009, 109: 6077–6101

    Article  CAS  Google Scholar 

  77. Okamoto Y, Honda S, Okamoto I, Yuki H, Murata S, Noyori R, Takaya H. Novel packing material for optical resolution: (+)-Poly (triphenylmethyl methacrylate) coated on macroporous silica gel. J Am Chem Soc, 1981, 103: 6971–6973

    Article  CAS  Google Scholar 

  78. Nakano T, Okamoto Y. Synthetic helical polymers: conformation and function. Chem Rev, 2001, 101: 4013–4038

    Article  CAS  Google Scholar 

  79. Yashima E, Maeda K. Chirality-responsive helical polymers. Macromolecules, 2008, 41: 3–12

    Article  CAS  Google Scholar 

  80. Tamura K, Miyabe T, Iida H, Yashima E. Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide) s bearing L-alanine pendants immobilized on silica gel by HPLC. Polym Chem, 2011, 2: 91–98

    Article  CAS  Google Scholar 

  81. Leitereg TJ, Guadagni DG, Harris J, Mon TR, Teranishi R. Evidence for the difference between the odours of the optical isomers (+)- and (−)-carvone. Nature, 1971, 230: 455–456

    Article  CAS  Google Scholar 

  82. Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F. A sensitivityenhanced field-effect chiral sensor. Nat Mater, 2008, 7: 412–417

    Article  CAS  Google Scholar 

  83. Trojanowicz M, Kaniewska M. Electrochemical chiral sensors and biosensors. Electroanalysis, 2009, 21: 229–238

    Article  CAS  Google Scholar 

  84. Guo HS, Kim JM, Chang SM, Kim WS. Chiral recognition of mandelic acid by L-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron, 2009, 24: 2931–2934

    Article  CAS  Google Scholar 

  85. Luo LM, Zhang WG, Zhang S, Fan H, Su WC, Yin X. Self-assembly and chiral recognition of quartz crystal microbalance chiral sensor. Chirality, 2010, 22: 411–415

    CAS  Google Scholar 

  86. Weng W, Han JL, Chen YZ, Huang XJ. Progress in chiral sensors. Prog Chem, 2007, 19: 1820–1825

    CAS  Google Scholar 

  87. Bustos E, Gacía JE, Bandala Y, Godínez LA, Juaristi E. Enantioselective recognition of alanine in solution with modified gold electrodes using chiral PAMAM dendrimers G4.0. Talanta, 2009, 78: 1352–1358

    Article  CAS  Google Scholar 

  88. Bodenhöfer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Göpel W. Chiral discrimination using piezoelectric and optical gas sensors. Nature, 1997, 387: 577–580

    Article  Google Scholar 

  89. Chen Q, Zhou J, Han Q, Wang YH, Fu YZ. A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. J Solid State Electrochem, 2012, 16: 2481–2485

    Article  CAS  Google Scholar 

  90. Fu YZ, Chen M, Cui X, Wang LL, Chen Q, Zhou J. Recognition behavior of chiral nanocomposites toward biomolecules and its application in electrochemical immunoassay. Sci China Chem, 2010, 53: 1453–1458

    Article  CAS  Google Scholar 

  91. Chen Q, Zhou J, Han Q, Wang YH, Fu YZ. The selective adsorption of human serum albumin on N-isobutyryl-cysteine enantiomers modified chiral surfaces. Biochem Eng J, 2012, 69: 155–158

    Article  CAS  Google Scholar 

  92. Bieri M, Gautier C, Bürgi T. Probing chiral interfaces by infrared spectroscopic methods. Phys Chem Chem Phys, 2007, 9: 671–685

    Article  CAS  Google Scholar 

  93. Ohta E, Sato H, Ando S, Kosaka A, Fukushima T, Hashizume D, Yamasaki M, Hasegawa K, Muraoka A, Ushiyama H, Yamashita K, Aida T. Redox-responsive molecular helices with highly condensed π-clouds. Nat Chem, 2011, 3: 68–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaoLei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Qing, G., Zhang, M. et al. Chiral polymer-based biointerface materials. Sci. China Chem. 57, 540–551 (2014). https://doi.org/10.1007/s11426-013-5059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5059-6

Keywords

Navigation