Skip to main content
Log in

Analysis of receptor-ligand binding by photoaffinity cross-linking

  • Reviews
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photoaffinity cross-linking is a fast developing technology for biomolecular interactions, including receptor-ligand binding. The chemical mechanisms of the most commonly used photoactivatable probes and their respective photochemistry are summarized. This review focuses on the expanding utilities of this technology as a result of recent advances in the (i) identification of receptor contact sites, (ii) monitoring ligand-induced receptor conformational changes, (iii) identification of global binding surfaces, (iv) binding mode analysis using bifunctional photo-probes, (v) application of biosynthetic photo-probes, and (vi) examples of novel target discovery using this technology. Limitations and future potential of this approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberle AN, de Graan PNE. General principles for photoaffinity labeling of peptide hormone receptors. Trend Biochem Sci, 1980, 5: 320–322

    Article  Google Scholar 

  2. Bayley H. Photogenerated Reagents in Biochemistry and Molecular Biology. New York: Elsevier, 1983

    Google Scholar 

  3. Shoelson SE, Lee J, Lynch CS, Backer JM, Pilch PF. BpaB25 insulins. Photoactivatable analogues that quantitatively cross-link, radiolabel, and activate the insulin receptor. J Biol Chem, 1993, 268: 4085–4091

    CAS  Google Scholar 

  4. Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz GP, Burke GT, Katsoyannis PG, Steiner DF. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. Identification of a new insulinbinding domain in the insulin receptor. J Biol Chem, 1994, 269: 29190–29197

    CAS  Google Scholar 

  5. Xu B, Hu SQ, Chu YC, Huang K, Nakagawa SH, Whittaker J, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in insulin: Consecutive residues in the B chain contact distinct domains of the insulin receptor. Biochemistry, 2004, 43: 8356–8372

    Article  CAS  Google Scholar 

  6. Xu B, Hu SQ, Chu YC, Wang S, Wang RY, Nakagawa SH, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in insulin identify invariant receptor contacts. Diabetes, 2004, 53: 1599–1602

    Article  CAS  Google Scholar 

  7. Huang K, Xu B, Hu SQ, Chu YC, Hua QX, Qu Y, Li B, Wang S, Wang RY, Nakagawa SH, Theede AM, Whittaker J, De Meyts P, Katsoyannis PG, Weiss MA. How insulin binds: The B-chain alphahelix contacts the L1 beta-helix of the insulin receptor. J Mol Biol, 2004, 341: 529–550

    Article  CAS  Google Scholar 

  8. Wan Z, Xu B, Huang K, Chu YC, Li B, Nakagawa SH, Qu Y, Hu SQ, Katsoyannis PG, Weiss MA. Enhancing the activity of insulin at the receptor interface: Crystal structure and photo-cross-linking of A8 analogues. Biochemistry, 2004, 43: 16119–16133

    Article  CAS  Google Scholar 

  9. Wan ZL, Huang K, Xu B, Hu SQ, Wang S, Chu YC, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in human insulin: Crystal structure and photo-cross-linking studies of α-chain variant insulin Wakayama. Biochemistry, 2005, 44: 5000–5016

    Article  CAS  Google Scholar 

  10. Huang K, Chan SJ, Hua QX, Chu YC, Wang RY, Klaproth B, Jia W, Whittaker J, De Meyts P, Nakagawa SH, Steiner DF, Katsoyannis PG, Weiss MA. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetesrelated crevice. J Biol Chem, 2007, 282: 35337–35349

    Article  CAS  Google Scholar 

  11. Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. J Biol Chem, 2009, 284: 14586–14596

    Article  CAS  Google Scholar 

  12. Xu B, Huang K, Chu YC, Hu SQ, Nakagawa S, Wang S, Wang RY, Whittaker J, Katsoyannis PG, Weiss MA. Decoding the cryptic active conformation of a protein by synthetic photoscanning: Insulin inserts a detachable arm between receptor domains. J Biol Chem, 2009, 284: 14597–14608

    Article  CAS  Google Scholar 

  13. Zhao M, Wan ZL, Whittaker L, Xu B, Phillips NB, Katsoyannis PG, Ismail-Beigi F, Whittaker J, Weiss MA. Design of an insulin analog with enhanced receptor binding selectivity: Rationale, structure, and therapeutic implications. J Biol Chem, 2009, 284: 32178–32187

    Article  CAS  Google Scholar 

  14. Smith BJ, Huang K, Kong G, Chan SJ, Nakagawa S, Menting JG, Hu SQ, Whittaker J, Steiner DF, Katsoyannis PG, Ward CW, Weiss MA, Lawrence MC. Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci U S A, 2010, 107: 6771–6776

    Article  CAS  Google Scholar 

  15. Whittaker J, Whittaker LJ, Roberts CT Jr, Phillips NB, Ismail-Beigi F, Lawrence MC, Weiss MA. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci U S A, 2012, 109: 11166–11171

    Article  CAS  Google Scholar 

  16. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Záková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC. How insulin engages its primary binding site on the insulin receptor. Nature, 2013, 493: 241–245

    Article  CAS  Google Scholar 

  17. Staros JV. Aryl azide photolabels in biochemistry. Trend Biochem Sci, 1980, 5: 320–322

    Article  CAS  Google Scholar 

  18. Preston GW, Wilson AJ. Photo-induced covalent cross-linking for the analysis of biomolecular. Chem Soc Rev, 2013, 42: 3289–3301

    Article  CAS  Google Scholar 

  19. Dormán G, Prestwich GD. Benzophenone photophores in biochemistry. Biochemistry, 1994, 33: 5661–5673

    Article  Google Scholar 

  20. Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB. Identification of binding sites in the nicotinic acetylcholine receptor for [3H]azietomidate, a photoactivatable general anesthetic. J Biol Chem, 2004, 279: 17640–17649

    Article  CAS  Google Scholar 

  21. Mackinnon AL, Taunton J. Target identification by diazirine photocross-linking and click chemistry. Curr Protoc Chem Biol, 2009, 1: 55–73

    Google Scholar 

  22. Fabry M, Schaefer E, Ellis L, Kojro E, Fahrenholz F, Brandenburg D. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J Biol Chem, 1992, 267: 8950–8956

    CAS  Google Scholar 

  23. Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photomethionine allow identification of protein-protein interactions in living cells. Nat Methods, 2005, 2: 261–267

    Article  CAS  Google Scholar 

  24. Bitan G, Scheibler L, Greenberg Z, Rosenblatt M, Chorev M. Mapping the integrin alpha v beta 3-ligand interface by photoaffinity cross-linking. Biochemistry, 1999, 38: 3414–3420

    Article  CAS  Google Scholar 

  25. Bitan G, Scheibler L, Mierke DF, Rosenblatt M, Chorev M. Ligandintegrin alpha v beta 3 interaction determined by photoaffinity cross-linking: a challenge to the prevailing model. Biochemistry, 2000, 39: 11014–11023

    Article  CAS  Google Scholar 

  26. Scheibler L, Mierke DF, Bitan G, Rosenblatt M, Chorev M. Identification of a contact domain between echistatin and the integrin alpha( v)beta(3) by photoaffinity cross-linking. Biochemistry, 2001, 40: 15117–15126

    Article  CAS  Google Scholar 

  27. Yahalom D, Wittelsberger A, Mierke DF, Rosenblatt M, Alexander JM, Chorev M. Identification of the principal binding site for RGD-containing ligands in the alpha(V)beta(3) integrin: A photoaffinity cross-linking study. Biochemistry, 2002, 41: 8321–8331

    Article  CAS  Google Scholar 

  28. Chen HT, Warfield L, Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol, 2007, 14: 696–703

    Article  CAS  Google Scholar 

  29. Grunbeck A, Huber T, Abrol R, Trzaskowski B, Goddard WA 3rd, Sakmar TP. Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem Biol, 2012, 7: 967–972

    Article  CAS  Google Scholar 

  30. Schwarz R, Tänzler D, Ihling CH, Müller MQ, Kölbel K, Sinz A. Monitoring conformational changes in peroxisome proliferatoractivated receptor α by a genetically encoded photoamino acid, cross-linking, and mass spectrometry. J Med Chem, 2013, 56: 4252–4263

    Article  CAS  Google Scholar 

  31. Schäffer L. A model for insulin binding to the insulin receptor. Eur J Biochem, 1994, 221: 1127–1132

    Article  Google Scholar 

  32. Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of Escherichia coli. Science, 2001, 292: 498–500

    Article  CAS  Google Scholar 

  33. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc, 2002, 124: 9026–9027

    Article  CAS  Google Scholar 

  34. Chin JW, Martin AB, King DS, Wang L, Schultz PG. Addition of a photo-cross-linking amino acid to the genetic code of Escherichia Coli. Proc Natl Acad Sci U S A, 2002, 99: 11020–11024

    Article  CAS  Google Scholar 

  35. Wang L, Xie J, Schultz PG. Expanding the genetic code. Annu Rev Biophys Biomol Struct, 2006, 35: 225–249

    Article  Google Scholar 

  36. Wan W, Huang Y, Wang Z, Russell WK, Pai PJ, Russell DH, Liu WR. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl, 2010, 49: 3211–3214

    Article  CAS  Google Scholar 

  37. Huang Y, Russell WK, Wan W, Pai PJ, Russell DH, Liu W. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol Biosyst, 2010, 6: 683–686

    Article  CAS  Google Scholar 

  38. Wang Q, Wang L. New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc. 2008, 130: 6066–6067

    Article  CAS  Google Scholar 

  39. Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein photo-cross-linking in mammalian cells by sitespecific incorporation of a photoreactive amino acid. Nat Methods, 2005, 2: 201–206

    Article  CAS  Google Scholar 

  40. Ye S, Köhrer C, Huber T, Kazmi M, Sachdev P, Yan EC, Bhagat A, RajBhandary UL, Sakmar TP. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J Biol Chem, 2008, 283: 1525–1533

    Article  CAS  Google Scholar 

  41. Janz JM, Ren Y, Looby R, Kazmi MA, Sachdev P, Grunbeck A, Haggis L, Chinnapen D, Lin AY, Seibert C, McMurry T, Carlson KE, Muir TW, Hunt S 3rd, Sakmar TP. Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J Am Chem Soc, 2011, 133: 15878–15881

    Article  CAS  Google Scholar 

  42. Ye S, Huber T, Vogel R, Sakmar TP. FTIR analysis of GPCR activation using azido probes. Nat Chem Biol, 2009, 5: 397–399

    Article  CAS  Google Scholar 

  43. Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, Deupi X, Vogel R. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature, 2010, 464: 1386–1389

    Article  CAS  Google Scholar 

  44. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012, 1: e00049

    Article  CAS  Google Scholar 

  45. Hino N, Oyama M, Sato A, Mukai T, Iraha F, Hayashi A, KozukaHata H, Yamamoto T, Yokoyama S, Sakamoto K. Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol, 2011, 406: 343–353

    Article  CAS  Google Scholar 

  46. Coin I, Perrin MH, Vale WW, Wang L. Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: A ligand comparison. Angew Chem Int Ed Engl, 2011, 50: 8077–8081

    Article  CAS  Google Scholar 

  47. Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl, 2006, 45: 7364–7367

    Article  CAS  Google Scholar 

  48. Ngo JT, Tirrell DA. Noncanonical amino acids in the interrogation of cellular protein synthesis. Acc Chem Res, 2011, 44: 677–685

    Article  CAS  Google Scholar 

  49. Baruah H, Puthenveetil S, Choi YA, Shah S, Ting AY. An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. Angew Chem Int Ed Engl, 2008, 47: 7018–7021

    Article  CAS  Google Scholar 

  50. Kanoh N, Asami A, Kawatani M, Honda K, Kumashiro S, Takayama H, Simizu S, Amemiya T, Kondoh Y, Hatakeyama S, Tsuganezawa K, Utata R, Tanaka A, Yokoyama S, Tashiro H, Osada H. Photocross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J, 2006, 1: 789–797

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Wu, L. Analysis of receptor-ligand binding by photoaffinity cross-linking. Sci. China Chem. 57, 232–242 (2014). https://doi.org/10.1007/s11426-013-5045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5045-z

Keywords

Navigation