Skip to main content
Log in

Synthesis and optical behaviors of 6-seleno-deoxyguanosine

  • Articles
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We have developed a simple method to synthesize 6-seleno-2′-deoxyguanosine (SedG) by selectively replacing the 6-oxygen atom with selenium. This selenium-atom-specific modification (SAM) alters the optical properties of the naturally occurring 2′-deoxyguanosine (dG). Unlike the native dG, the UVabsorption of SedG is significantly influenced by the pH of the aqueous solution. Moreover, SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions. Furthermore, SedG has noticeable fluorescence in non-aqueous solutions, indicating its sensitivity to environmental changes. This is the first time a fluorescent nucleoside by single-atom alteration has been observed. Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins, such as membrane-transporter proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev, 2011, 40(9): 4591–4602

    Article  CAS  Google Scholar 

  2. Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Seguanosine RNAs for structural study. Org Lett, 2013, (15)3934–3937

    Google Scholar 

  3. Sheng J, Gan J, Soars AS, Salon J, Huang Z. Structural insights of non-canonical U*U pair and hoogsteen interaction probed with Se atom. Nucleic Acids Res, 2013, in press

    Google Scholar 

  4. Sheng J, Zhang W, Hassan AE, Gan J, Soares AS, Geng S, Ren Y, Huang Z. Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone. Nucleic Acids Res, 2012, 40(16): 8111–8118

    Article  CAS  Google Scholar 

  5. Sheng J, Huang Z. Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodiversity, 2010, 7(4): 753–785

    Article  CAS  Google Scholar 

  6. Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z. Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc, 2007, 129(16): 4862–4863

    Article  CAS  Google Scholar 

  7. Salon J, Chen G, Portilla Y, Germann MW, Huang Z. Synthesis of a 2′-Se-uridine phosphoramidite and its incorporation into oligonucleotides for structural study. Org Lett, 2005, 7(25): 5645–5648

    Article  CAS  Google Scholar 

  8. Hassan AE, Sheng J, Zhang W, Huang Z. High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc, 2010, 132(7): 2120–2121

    Article  CAS  Google Scholar 

  9. Hassan AE, Sheng J, Jiang J, Zhang W, Huang Z. Synthesis and crystallographic analysis of 5-Se-thymidine DNAs. Org Lett, 2009, 11(12): 2503–2506

    Article  CAS  Google Scholar 

  10. Sheng J, Jiang J, Salon J, Huang Z. Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett, 2007, 9(5): 749–752

    Article  CAS  Google Scholar 

  11. Zhang W, Hassan EA, Huang Z. Synthesis of novel di-Se-containing thymidine and Se-DNAs for structure and function studies. Sci China Chem, 2013, 56(3): 273–278

    Article  CAS  Google Scholar 

  12. Sun H, Jiang S, Caton-Williams J, Liu H, Huang Z. 2-Selenouridine triphosphate synthesis and Se-RNA transcription. RNA, 2013, 19 1309–1314

    Article  CAS  Google Scholar 

  13. Lin L, Sheng J, Momin RK, Liu H, Huang Z. Facile synthesis and anti-tumor cell activity of Se-containing nucleosides. Nucleosides, Nucleotides Nucleic Acids, 2009, 28(1): 56–66

    Article  CAS  Google Scholar 

  14. Brandt G, Carrasco N, Huang Z. Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X-ray crystallography. Biochemistry, 2006, 45(29): 8972–8977

    Article  CAS  Google Scholar 

  15. Carrasco N, Ginsburg D, Du Q, Huang Z. Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides, Nucleotides Nucleic Acids, 2001, 20(9): 1723–1734

    Article  CAS  Google Scholar 

  16. Longworth J, Rahn R, Shulman R. Luminescence of pyrimidines, purines, nucleosides, and nucleotides at 77 K. The effect of ionization and tautomerization. J Chem Phys, 1966, 45: 2930

    Article  CAS  Google Scholar 

  17. Walaas E. Fluorescence of adenine and inosine nucleotides. Acta Chem Scand, 1963, 17: 461–463

    Article  Google Scholar 

  18. Börresen H. On the luminescence properties of some purines and pyrimidines. Acta Chem Scand, 1963, 17(4): 921–929

    Article  Google Scholar 

  19. Cohen BJ, Goodman L. Luminescence of purines 1. J Am Chem Soc, 1965, 87(23): 5487–5490

    Article  CAS  Google Scholar 

  20. Korshun VA, Manasova EV, Balakin KV, Malakhov AD, Perepelov AV, Sokolova TA, Berlin Yu A. New fluorescent nucleoside derivatives-5-alkynylated 2-deoxyuridines. Nucleosides Nucleotides, 1998, 17(9-11): 1809–1812

    Article  CAS  Google Scholar 

  21. Kovaliov M, Segal M, Fischer B. Fluorescent p-substituted-phenyl-imidazolo-cytidine analogues. Tetrahedron, 2013, 69(18): 3698–3705

    Article  CAS  Google Scholar 

  22. Bag SS, Saito Y, Hanawa K, Kodate S, Suzuka I, Saito I. Intelligent fluorescent nucleoside in sensing cytosine base: Importance of hydrophobic nature of perylene fluorophore. Bioorg Med Chem Lett, 2006, 16(24): 6338–6341

    Article  CAS  Google Scholar 

  23. Ben Gaied N, Glasser N, Ramalanjaona N, Beltz H, Wolff P, Marquet R, Burger A, Mély Y. 8-Vinyl-deoxyadenosine, an alternative fluorescent nucleoside analog to 2′-deoxyribosyl-2-aminopurine with improved properties. Nucleic Acids Res, 2005, 33(3): 1031–1039

    Article  CAS  Google Scholar 

  24. Wilson JN, Gao J, Kool ET. Fluorescent nucleoside analogs: Synthesis, properties and applications. Tetrahedron, 2007, 63(17): 3415

    Article  Google Scholar 

  25. Xie Y, Maxson T, Tor Y. Fluorescent nucleoside analogue displays enhanced emission upon pairing with guanine. Org Biomol Chem, 2010, 8(22): 5053–5055

    Article  CAS  Google Scholar 

  26. Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: Design, properties and applications. Chem Rev, 2010, 110(5): 2579–2619

    Article  CAS  Google Scholar 

  27. Dodd D, Hudson R. Intrinsically fluorescent base-discriminating nucleoside analogs. Mini-Rev Org Chem, 2009, 6(4): 378–391

    Article  CAS  Google Scholar 

  28. Akimitsu O, Yoshio S, Isao S. Design of base-discriminating fluorescent nucleosides. J Photochem Photobiol, C, 2005, 6, 108–122

    Article  Google Scholar 

  29. Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z. Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res, 2008, 36(22): 7009–7018

    Article  CAS  Google Scholar 

  30. Milne GH, Townsend LB. Synthesis and antitumor activity of alpha- and beta-2′-deoxy-6-selenoguanosine and certain related derivatives. J Med Chem, 1974, 17(3): 263–268

    Article  CAS  Google Scholar 

  31. Chu S-H, Davidson DD. Potential antitumor agents. 2. Alpha- and Beta-2′-deoxy-6-selenoguanosine and related compounds. J Med Chem, 1972, 15(10): 1088–1089

    Article  CAS  Google Scholar 

  32. Chu SH. Potential antitumor agents. Selenoguanosine and related compounds. J Med Chem, 1971, 14(3): 254–255

    Article  CAS  Google Scholar 

  33. Beltagy Y, Waugh W, Repta A. Antioxidants in purification, stabilization, and formulation of the antineoplastic agent 6-selenoguanosine. J Pharm Sci, 1980, 69(10): 1168–1170

    Article  CAS  Google Scholar 

  34. Harris NJ, Booth PJ. Folding and stability of membrane transport proteins in vitro. Biochim Biophys Acta, Biomembr, 2012, 1818(4): 1055–1066

    Article  CAS  Google Scholar 

  35. Charalambous K, Booth PJ, Woscholski R, Seddon JM, Templer RH, Law RV, Barter LM, Ces O. Engineering de novo membrane-mediated protein-protein communication networks. J Am Chem Soc, 2012, 134(13): 5746–5749

    Article  CAS  Google Scholar 

  36. Werten P, Rémigy HW, de Groot B, Fotiadis D, Philippsen A, Stahlberg H, Grubmüller H, Engel A. Progress in the analysis of membrane protein structure and function. FEBS Lett, 2002, 529(1): 65–72

    Article  CAS  Google Scholar 

  37. Li F, Xia Y, Meiler J, Ferguson-Miller S. Characterization and modeling of the oligomeric state and ligand binding behavior of purified translocator protein 18 KDa from rhodobacter sphaeroides. Biochemistry, 2013, 54(34): 5884–5899

    Article  Google Scholar 

  38. Rask-Andersen M, Masuram S, Fredriksson R, Schiöth HB. Solute carriers as drug targets: Current use, clinical trials and prospective. Mol Aspects Med, 2013, 34(2): 702–710

    Article  CAS  Google Scholar 

  39. Lau FW, Bowie JU. A method for assessing the stability of a membrane protein. Biochemistry, 1997, 36(19): 5884–5892

    Article  CAS  Google Scholar 

  40. Hebling CM, Morgan CR, Stafford DW, Jorgenson JW, Rand KD, Engen JR. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal Chem, 2010, 82(13): 5415–5419

    Article  CAS  Google Scholar 

  41. Grewer C, Gameiro A, Mager T, Fendler K. Electrophysiological characterization of membrane transport proteins. Annu rev biophys, 2013, 42: 95–120

    Article  CAS  Google Scholar 

  42. Shaikh SA, Li J, Enkavi G, Wen PC, Huang Z, Tajkhorshid E. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry, 2013, 52(4): 569–587

    Article  CAS  Google Scholar 

  43. Teale F. The ultraviolet fluorescence of proteins in neutral solution. Biochem J, 1960, 76(2): 381–388

    CAS  Google Scholar 

  44. Alhambra C, Luque F, Estelrich J, Orozco Modesto. Tautomerism of neutral and protonated 6-thioguanine in the gas phase and in aqueous solution. An ab initio study. J Org Chem, 1995, 60(4): 969–976

    Article  CAS  Google Scholar 

  45. Leszczynski J. Tautomers of 6-thioguanine: Structures and properties. J Phys Chem, 1993, 97(14): 3520–3524

    Article  CAS  Google Scholar 

  46. Stewart MJ, Leszczynski J, Rubin YV, Blagoi YP. Tautomerism of thioguanine: From gas phase to DNA. J Phys Chem A, 1997, 101(26): 4753–4760

    Article  CAS  Google Scholar 

  47. Venkateswarlu D, Leszczynski J. Tautomerism and proton transfer in 6-selenoguanine: A post Hartree-Fock level ab initio SCF-MO investigation. J Phys Chem A, 1998, 102(30): 6161–6166

    Article  CAS  Google Scholar 

  48. Leszczyński J. Guanine, 6-thioguanine and 6-selenoguanine: Ab initio HF/DZP and MP2/DZP comparative studies. J Mol Struct, 1994, 311: 37–44

    Google Scholar 

  49. Cho HY, Woo SK, Hwang GT. Synthesis and photophysical study of 2′-deoxyuridines labeled with fluorene derivatives. Molecules, 2012, 17(10): 12061–12071

    Article  CAS  Google Scholar 

  50. Yoshio S, Azusa S, Shinya I, Isao S. Synthesis and photophysical properties of novel push-pull-type solvatochromic 7-deaza-2′-deoxypurine nucleosides. Tetrahedron Lett, 2011, 52(37): 4726–4729

    Article  Google Scholar 

  51. Callis PR. Electronic states and luminescence of nucleic acid systems. Annu Rev Phys Chem, 1983, 34(1): 329–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, M., Huang, Z. Synthesis and optical behaviors of 6-seleno-deoxyguanosine. Sci. China Chem. 57, 314–321 (2014). https://doi.org/10.1007/s11426-013-5038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5038-y

Keywords

Navigation