Skip to main content

DNA-associated click chemistry

Abstract

This review highlights the most recent advances in click chemistry associated with DNA. Cu[I]-catalyzed azides-alkynes Huisgen cycloadditions (CuAAC) and a strain-promoted alkyne-azide cycloaddition (SPAAC) are two popular click reactions that have great impact in DNA science. The simplicity, versatility, orthogonality, and high efficiency of click reaction along with a stable triazole product have been instrumental for the successful application of this reaction in the field of nucleic acid chemistry. CuAAC and SPAAC reactions have been widely used for DNA modification, including DNA labeling, metallization, conjugation, cross-linking, and ligation. Modified oligodeoxynucleotides obtained from click reaction have been extensively applied in the fields of drug discovery, nanotechnology, bio-conjugation, and material sciences, among others. The most recent advances in the synthesis and applications of clickable DNAs are discussed in detail in this article.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40: 2004–2021

    CAS  Article  Google Scholar 

  2. 2

    Breinbauer R, Kohn M. Azide-Alkyne coupling: A powerful reaction for bioconjugate chemistry. ChemBioChem, 2003, 4: 1147–1149

    CAS  Article  Google Scholar 

  3. 3

    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A Stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew Chem Int Ed, 2002, 41: 2596–2599

    CAS  Article  Google Scholar 

  4. 4

    Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 2002, 67: 3057–3064

    Article  Google Scholar 

  5. 5

    Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc, 2005, 127: 210–216

    CAS  Article  Google Scholar 

  6. 6

    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] aycloaddition. J Am Chem Soc, 2003, 125: 3192–3193

    CAS  Article  Google Scholar 

  7. 7

    Breinbauer R, Kohn M. Azide-Alkyne coupling: A powerful reaction for bioconjugate chemistry. ChemBioChem, 2003, 4: 1147–1149

    CAS  Article  Google Scholar 

  8. 8

    Best MD. Click chemistry and bioorthogonal reactions: Unprecedented selectivity in the labeling of biological molecules. Biochemistry, 2009, 48: 6571–6584

    CAS  Article  Google Scholar 

  9. 9

    Varizhuk AM, Kaluzhny DN, Novikov RA, Chizhov AO, Smirnov IP, Chuvilin AN, Tatarinova ON, Fisunov GY, Pozmogova GE, Florentiev VL. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems. J Org Chem, 2013, 78: 5964–5969

    CAS  Article  Google Scholar 

  10. 10

    Kumar R, Ei-Saheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J Am Chem Soc, 2007, 129: 6859–6864

    CAS  Article  Google Scholar 

  11. 11

    Peng X, Li H, Seidman M. A template-mediated click-click reaction: PNA-DNA, PNA-PNA(or peptide) ligation, and single nucleotide discrimination. Eur J Org Chem, 2010, 4194–4197

    Google Scholar 

  12. 12

    Sun H, Peng X. Template-directed fluorogenic oligonucleotide ligation using “click” chemistry: Detection of single nucleotide polymorphism in the human p53 tumor suppressor gene. Bioconjugate Chem, 2013, 24: 1226–1234

    CAS  Article  Google Scholar 

  13. 13

    Pujari SS, Xiong H, Seela F. Cross-linked DNA generated by “bis-click” reactions with bis-functional azides: Site independent ligation of oligonucleotides via nucleobase alkynyl chains. J Org Chem, 2010, 75: 8693–8696

    CAS  Article  Google Scholar 

  14. 14

    Moorhouse AD, Santos AM, Gunaratnam M, Moore M, Neidle S, Moses JE. Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry. J Am Chem Soc, 2006, 128: 15972–15973

    CAS  Article  Google Scholar 

  15. 15

    Gerrard SR, Hardiman C, Shelbourne M, Nandhakumar I, Norden B, Brown T. A new modular appropach to nanoassembly: Stable and addressable DNA nanoconstructs via orthogonal click chemistries. Acs Nano, 2012, 6: 9221–9228

    CAS  Article  Google Scholar 

  16. 16

    Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today, 2003, 8:1128–1137

    CAS  Article  Google Scholar 

  17. 17

    Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed Engl, 2002, 41:1053–1057

    CAS  Google Scholar 

  18. 18

    Chiou SH. DNA- and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex. J Biochem, 1983, 94: 1259–1267

    CAS  Google Scholar 

  19. 19

    Oikawa S, Kawanishi S. Site-specific DNA damage induced by NADH in the presence of copper(II): Role of active oxygen species. S Biochemistry, 1996, 35: 4584–4590

    CAS  Article  Google Scholar 

  20. 20

    Chan TR, Hilgraf R, Sharpless KB, Fokin VV. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett, 2004, 6: 2853–2855

    CAS  Article  Google Scholar 

  21. 21

    Marks IS, Kang JS, Jones BT, Landmark KJ, Cleland AJ, Taton TA. Strain-promoted “click” chemistry for terminal labeling of DNA. Bioconjugate Chem, 2011, 22: 1259–1263

    CAS  Article  Google Scholar 

  22. 22

    Agard NJ, Prescher JA, Bertozzi CR. A Strain-promoted [3+2] azidealkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2004, 126: 15046–15047

    CAS  Article  Google Scholar 

  23. 23

    Gramlich PME, Wirges CT, Manetto A, Carel T. Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed, 2008, 47: 8350–8358

    CAS  Article  Google Scholar 

  24. 24

    El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev, 2010, 39: 1388–1405

    CAS  Article  Google Scholar 

  25. 25

    Seela F, Ingale SA. “Double click” reaction on 7-deazaguanine DNA: Synthesis and excimer fluorescence of nucleosides and oligonucleotides with branched side chains decorated with proximal pyrenes. J Org Chem, 2010, 75: 284–295

    CAS  Article  Google Scholar 

  26. 26

    Seo TS, Li Z, Ruparel H, Ju J. Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J Org Chem, 2003, 68: 609–612

    CAS  Article  Google Scholar 

  27. 27

    Wenge U, Ehrenschwender T, Wagenknecht HA. Synthesis of 2-O-propargyl nucleoside triphosphates for enzymatic oligonucleotide preparation and “click” modification of DNA with nile red as fluorescent probe. Bioconjugate Chem, 2013, 24: 301–304

    CAS  Article  Google Scholar 

  28. 28

    Werder S, Malinovskii VL, Haner R. Triazolylpyrenes: Synthesis, fluorescence properties, and incorporation into DNA. Org Lett, 2008, 10: 2011–2014

    CAS  Article  Google Scholar 

  29. 29

    Ingale SA, Pujari SS, Sirivolu VR, Ding P, Xiong H, Mei H, Seela F. 7-Deazapurine and 8-aza-7-deazapurine nucleoside and oligonucleotide pyrene “click” conjugates: Synthesis, nucleobase controlled fluorescence quenching, and duplex stability. J Org Chem, 2012, 77: 188–199

    CAS  Article  Google Scholar 

  30. 30

    Jakobsen U, Shelke SA, Vogel S, Sigurdsson ST. Site-directed spin-labeling of nucleic acids by click chemistry: Detection of abasic sites in duplex DNA by EPR spectroscopy. J Am Chem Soc, 2010, 132: 10424–10428

    CAS  Article  Google Scholar 

  31. 31

    Ding P, Wunnicke D, Steinhoff H-J, Seela F. Site-directed spin labeling of DNA by the azide-alkyne ‘click’ reaction: Nanometer distance measurements on 7-Deaza-2′-deoxyadenosine and 2′-deoxyur-idine nitroxide conjugates spatially separated or linked to a ‘dA-dT’ base pair. Chem Eur J, 2010, 16: 14385–14396

    CAS  Article  Google Scholar 

  32. 32

    Schoch J, Staudt M, Samanta A, Wiessler M, Jaschke A. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjugate Chem, 2012, 23: 1382–1386

    CAS  Article  Google Scholar 

  33. 33

    Saxon E, Bertozzi CR. Cell surface engineering by a modified staudinger reaction. Science, 2000, 287: 2007–2010

    CAS  Article  Google Scholar 

  34. 34

    Nakane M, Ichikawa S, Matsuda A. Triazole-linked dumbbell oligodeoxynucleotides with NF-κB binding ability as potential decoy molecules. J Org Chem, 2008, 73: 1842–1851

    CAS  Article  Google Scholar 

  35. 35

    Ichikawa S, Ueno H, Sunadome T, Sato K, Matsuda A. Tris(azidoethyl)amine hydrochloride; a versatile reagent for synthesis of functionalized dumbbell oligodeoxynucleotides. Org Lett, 2013, 15: 694–697

    CAS  Article  Google Scholar 

  36. 36

    Mirkin EC, Nguyen ST, Eryazic I. Progress toward “click”-based small-molecule DNA hybrids part II: Di- and tri-functionalized core. Nanoscape, 2010, 7: 24–27

    Google Scholar 

  37. 37

    Weller RL, Rajski SR. DNA methyltransferase-moderated click chemistry. Org Lett, 2005, 7: 2141–2144

    CAS  Article  Google Scholar 

  38. 38

    Burley GA, Gierlich J, Mofid MR, Nir H, Tal S, Eichen Y, Carell T. Directed DNA metallization. J Am Chem Soc, 2006, 128: 1398–1399

    CAS  Article  Google Scholar 

  39. 39

    Braun E, Eichen Y, Sivan Y, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391: 775–778

    CAS  Article  Google Scholar 

  40. 40

    Keren K, Berman RS, Buchstab E, Sivan U, Braun E. DNA-temp-lated carbon nanotube field-effect transistor. Science, 2003, 302: 1380–1382

    CAS  Article  Google Scholar 

  41. 41

    Fischler M, Simon U, Nir H, Eichen Y, Burley GA, Gierlich J, Gramlich PME, Carell T. Format ion of bimetallic Ag-Au nanowires by metallization of artificial DNA duplexes. Small, 2007, 3:1049–1055

    CAS  Article  Google Scholar 

  42. 42

    Timper J, Gutsmiedl, Wirges C, Broda J, Noyong M, Mayer J, Carell T, Simon U. Surface “click” reaction of DNA followed by directed metalization for the construction of contactable conducting nanostructures. Angew Chem Int Ed Engl, 2012, 51: 7586–7588

    CAS  Article  Google Scholar 

  43. 43

    Balachander N, Sukenik CN. Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies. Langmuir, 1990, 6: 1621–1627

    CAS  Article  Google Scholar 

  44. 44

    Hein CD, Liu XM, Wang D. Click chemistry, A powerful tool for pharmaceutical sciences. Pharm Res, 2008, 25: 2216–2230

    CAS  Article  Google Scholar 

  45. 45

    Kolb A, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discovery Today, 2003, 8: 1128–1137

    CAS  Article  Google Scholar 

  46. 46

    Dijk MV, Rijkers DTS, Liskamp RMJ, Nostrum CFV, Hennink WE. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem, 2009, 20: 2001–2016

    Article  Google Scholar 

  47. 47

    Golas PL, Matyjaszewski K. Marrying click chemistry with poly-merization: Expanding the scope of polymeric materials. Chem Soc Rev, 2010, 39: 1338–1354

    CAS  Article  Google Scholar 

  48. 48

    Dingn S, Qiao X, Kucera GL, Bierbach U. Using a build-and-click approach for producing structural and functional diversity in DNA-targeted hybrid anticancer agents. J Med Chem, 2012, 55: 10198–10203

    Article  Google Scholar 

  49. 49

    Talelli M, Morita M, Rijcken CJF, Aben RWM, Lammers T, Scheeren HW, Nostrum CFV, Storm G, Hennink WE. Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry. Bioconjugate Chem, 2011, 22: 2519–2530

    CAS  Article  Google Scholar 

  50. 50

    Ding S, Qiao X, Suryadi J, Marrs GS, Kucera GL, Bierbach U. Using fluorescent post-labeling to probe the subcellular localization of DNA-targeted platinum anticancer agents. Angew Chem Int Ed Engl, 2013, 52: 3350–3354

    CAS  Article  Google Scholar 

  51. 51

    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA, 2007, 104: 16793–16797

    CAS  Article  Google Scholar 

  52. 52

    Qiao DS, Kucera GL, Bierbach U. Using a build-and-click approach for producing structural and functional diversity in DNA-targeted hybrid anticancer agents. J Med Chem, 2012, 55: 10198–10203

    Article  Google Scholar 

  53. 53

    Rousselet G, Capdevielle P, Maumy M. Copper(I)-induced addition of amines to unactivated nitriles: The first general one-step synthesis of alkyl amidines. Tetrahedron Lett, 1993, 34: 6395–6398

    CAS  Article  Google Scholar 

  54. 54

    Pujari SS, Seela F. Parallel stranded DNA stabilized with internal sugar cross-links: Synthesis and click ligation of oligonucleotides containing 2′-propargylated isoguanosine. J Org Chem, 2013, 78: 8545–8561.

    CAS  Article  Google Scholar 

  55. 55

    Pujari SS, Seela F. Cross-linked DNA: Propargylated ribonucleosides as “click” ligation sites for bifunctional azides. J Org Chem, 2012, 77: 4460–4465

    CAS  Article  Google Scholar 

  56. 56

    Xiong H, Seela F. Cross-linked DNA: Site-selective “click” ligation in duplexes with bis-azides and stability changes caused by internal cross-links. Bioconjugate Chem, 2012, 23: 1230–1243

    CAS  Article  Google Scholar 

  57. 57

    Ingale SA, Seela F. Stepwise click functionalization of DNA through a bifunctional azide with a chelating and a nonchelating azido group. J Org Chem, 2013, 78: 3394–3399

    CAS  Article  Google Scholar 

  58. 58

    Xiong H, Seela F. Stepwise “click” chemistry for the template independent construction of a broad variety of cross-linked oligonucleotides: Influence of linker length, position, and linking number on DNA duplex stability. J Org Chem, 2011, 76: 5584–5597

    CAS  Article  Google Scholar 

  59. 59

    Xiong H, Leonard P, Seela F. Construction and assembly of branched Y-shaped DNA: “Click” chemistry performed on dendronized 8-aza-7-deazaguanine oligonucleotides. Bioconjugate Chem, 2012, 23: 856–870

    CAS  Article  Google Scholar 

  60. 60

    Niu J, Hili R, Liu DR. Enzyme-free translation of DNA into sequence defined synthetic polymers structurally unrelated to nucleic acids. Nature Chem, 2013, 5: 282–292

    Article  Google Scholar 

  61. 61

    Leitzel JC, Lynn DG. Template-directed ligation: From DNA towards different versatile templates. Chem. Rev, 2001, 1: 53–62

    CAS  Google Scholar 

  62. 62

    Silverman AP, Kool ET. Detecting RNA and DNA with templated chemical reactions. Chem Rev, 2006, 106: 3775–3789

    CAS  Article  Google Scholar 

  63. 63

    Fischler M, Sologubenko A, Mayer J, Clever G, Burley G, Gierlich J, Carell T, Simon U. Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘click chemistry’. Chem Commun, 2008, 169-171

  64. 64

    Qing G, Xiong H, Seela F, Sun T. Spatially controlled DNA nanopatterns by “click” chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc, 2010, 132: 15228–15232

    CAS  Article  Google Scholar 

  65. 65

    Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA. Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett, 2010, 10: 1477–1480

    CAS  Article  Google Scholar 

  66. 66

    Lundberg EP, El-Sagheer AH, Kocalka P, Wilhelmsson LM, Brown T, Norden B. A new fixation strategy for addressable nano-network building blocks. Chem Commun, 2010, 46: 3714–3716

    CAS  Article  Google Scholar 

  67. 67

    Shi L, Jing C, Ma M, Li D, Halls JE, Marken F, Long YT. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: Real-time monitoring of a click reaction. Angew Chem Int Ed Engl, 2013, 52: 6011–6014

    CAS  Article  Google Scholar 

  68. 68

    Xu X, Daniel WL, Wei W, Mirkin CA. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small, 2010, 6: 623–626

    CAS  Article  Google Scholar 

  69. 69

    Choi JY, Kim YT, Seo TS. Polymerase chain reaction-free variable-number tandem repeat typing using gold nanoparticle DNA monoconjugates. ACS Nano, 2013, 7: 2627–2633

    CAS  Article  Google Scholar 

  70. 70

    Gutsmiedl K, Fazio D, Carell T. High-density DNA functionalization by a combination of Cu-catalyzed and Cu-free click chemistry. Chem Eu. J, 2010, 16: 6877–6883

    CAS  Article  Google Scholar 

  71. 71

    Song W, Wang Y, Qu J, Lin Q. Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J Am Chem Soc, 2008, 130: 9654–9655

    CAS  Article  Google Scholar 

  72. 72

    Blackman ML, Royzen M, Fox JM. Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand diels-alder reactivity. J Am Chem Soc, 2008, 130: 13518–13519

    CAS  Article  Google Scholar 

  73. 73

    Berkel SSV, Dirks AJ, Meeuwissen SA, Pingen DLL, Boerman OC, Laverman P, Delft FLV, Cornelissen JJLM, Rutjes FPJT. Application of metal-free triazole formation in the synthesis of cyclic RGD-DTPA conjugates. ChemBioChem, 2008, 9: 1805–1815

    Article  Google Scholar 

  74. 74

    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. PNAS, 2007, 104: 16793–16797

    CAS  Article  Google Scholar 

  75. 75

    Hudak JE, Barfield RM, Hart GWD, Grob P, Nogales E, Bertozzi CR, Rabuka D. Synthesis of heterobifunctional protein fusions using copper-free click chemistry and the aldehyde tag. Angew Chem Int Ed Engl, 2012, 51: 4161–4165

    CAS  Article  Google Scholar 

  76. 76

    Shelbourne M, Brown T, El-Sagheer AH, Brown A. Fast and efficient DNA crosslinking and multiple orthogonal labelling by copper-free click chemistry. Chem Commun, 2012, 48: 11184–11186

    CAS  Article  Google Scholar 

  77. 77

    Kim Y, Kim SH, Ferracane D, Katzenellenbogen JA, Schroeder CM. Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry. Bioconjugate Chem, 2012, 23: 1891–1901

    CAS  Article  Google Scholar 

  78. 78

    Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev, 2010, 39: 1272–1279

    CAS  Article  Google Scholar 

  79. 79

    Gordon CG, Mackey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR. Reactivity of biarylazacyclooctynones in copper-free click chemistry. J Am Chem Soc, 2012, 134: 9199–9208

    CAS  Article  Google Scholar 

  80. 80

    Almeida GD, Sletten EM, Nakamura H, Palaniappan KK, Bertozzi CR. Thiacycloalkynes for copper-free click chemistry. Angew Chem Int Ed Engl, 2012, 51: 2443–2447

    Article  Google Scholar 

  81. 81

    Shelbourne M, Chen X, Brown T, El-Sagheer AH. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction. Chem Commun, 2011, 47: 6257–6259

    CAS  Article  Google Scholar 

  82. 82

    Heuer-Jungemann A, Kirkwood R, El-Sagheer AH, Brown T, Kanaras AG. Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 2013, 5: 7209–7212

    CAS  Article  Google Scholar 

  83. 83

    Qiu J, El-Sagheer AH, Brown T. Solid phase click ligation for the synthesis of very long oligonucleotides. Chem Commun, 2013, 49: 6959–6961

    CAS  Article  Google Scholar 

  84. 84

    Marks IS, Kang JS, Jones BT, Landmark KJ, Cleland AJ, Taton TA. Strain-promoted “click” chemistry for terminal labeling of DNA. Bioconjug Chem, 2011, 20: 1259–1263

    Article  Google Scholar 

  85. 85

    Khatwani SL, Mullen DG, Hast MA, Beese LS, Distefano MD, Taton TA. Covalent protein-oligonucleotide conjugates by copper-free click reaction. Bioorg Med Chem, 2012, 20: 4532–4539

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to XiaoHua Peng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haque, M.M., Peng, X. DNA-associated click chemistry. Sci. China Chem. 57, 215–231 (2014). https://doi.org/10.1007/s11426-013-5035-1

Download citation

Keywords

  • “click” chemistry
  • oligodeoxynucleotides
  • DNA functionalization
  • DNA ligation and cross-linking