Skip to main content
Log in

Cluster-in-molecule local correlation method for large systems

  • Reviews
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A linear scaling local correlation method, cluster-in-molecule (CIM) method, was developed in the last decade for large systems. The basic idea of the CIM method is that the electron correlation energy of a large system, within the Møller-Plesset perturbation theory (MP) or coupled cluster (CC) theory, can be approximately obtained from solving the corresponding MP or CC equations of various clusters. Each of such clusters consists of a subset of localized molecular orbitals (LMOs) of the target system, and can be treated independently at various theory levels. In the present article, the main idea of the CIM method is reviewed, followed by brief descriptions of some recent developments, including its multilevel extension and different ways of constructing clusters. Then, some applications for large systems are illustrated. The CIM method is shown to be an efficient and reliable method for electron correlation calculations of large systems, including biomolecules and supramolecular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pulay P. Localizability of dynamic electron correlation. Chem Phys Lett, 1983, 100: 151–154

    Article  CAS  Google Scholar 

  2. Saebø S, Pulay P. Local configuration interaction: An efficient approach for larger molecules. Chem Phys Lett, 1985, 113: 13–18

    Article  Google Scholar 

  3. Saebø S, Pulay P. The local correlation treatment. II. Implementation and tests. J Chem Phys, 1988, 88: 1884–1890

    Article  Google Scholar 

  4. Saebø S, Pulay P. Local treatment of electron correlation. Annu Rev Phys Chem, 1993, 44: 213–236

    Article  Google Scholar 

  5. Pulay P, Saebø S. Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory. Theor Chim Acta, 1986, 69: 357–368

    Article  CAS  Google Scholar 

  6. Saebø S, Pulay P. Fourth-order Møller-Plessett perturbation theory in the local correlation treatment. I. Method. J Chem Phys, 1987, 86: 914–922

    Article  Google Scholar 

  7. Hampel C, Werner HJ. Local treatment of electron correlation in coupled cluster theory. J Chem Phys, 1996, 104, 6286–6297

    Article  CAS  Google Scholar 

  8. Werner H-J, Schutz M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys, 2011, 135: 144116-1–15

    Article  Google Scholar 

  9. Scuseria GE, Ayala PY. Linear scaling coupled cluster and perturbation theories in the atomic orbital basis. J Chem Phys, 1999, 111: 8330–8343

    Article  CAS  Google Scholar 

  10. Maslen PE, Head-Gordon M. Non-iterative local second order Møller-Plesset theory. Chem Phys Lett, 1998, 283: 102–108

    Article  CAS  Google Scholar 

  11. Maslen PE, Head-Gordon M. Noniterative local second order Møller-Plesset theory: Convergence with local correlation space. J Chem Phys, 1998, 109: 7093–7099

    Article  CAS  Google Scholar 

  12. Head-Gordon M, Maslen PE, White C A. A tensor formulation of many-electron theory in a nonorthogonal single-particle basis. J Chem Phys, 1998, 108: 616–625

    Article  CAS  Google Scholar 

  13. Förner W, Ladik J, Otto P, Čížek Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems. J. Chem Phys, 1985, 97: 251–262

    Google Scholar 

  14. Förner W. Coupled cluster studies. IV. Analysis of the correlated wavefunction in canonical and localized orbital basis for ethylene, carbon monoxide, and carbon dioxide. Chem Phys, 1987, 114: 21–35

    Article  Google Scholar 

  15. Li S, Ma J, Jiang Y. Linear scaling local correlation approach for solving the coupled cluster equations of large systems. J Comput Chem, 2002, 23: 237–244

    Article  CAS  Google Scholar 

  16. Li S, Shen J, Li W, Jiang Y, An efficient implementation of the “cluster-in-molecule” approach for local electron correlation calculations. J Chem Phys, 2006, 125: 074109-1–10

    Google Scholar 

  17. Li W, Piecuch P, Gour J R, Li S. Local correlation calculations using standard and renormalized coupled-cluster approaches. J Chem Phys, 2009, 131: 114109-1–30

    Google Scholar 

  18. Li W, Piecuch P. Improved design of orbital domains within the cluster-in-molecule local correlation framework: Single-environment cluster-in-molecule ansatz and its application to local coupled-cluster approach with singles and doubles. J Phys Chem A, 2010, 114: 8644–8657

    Article  CAS  Google Scholar 

  19. Li W, Piecuch P. Multilevel extension of the cluster-in-molecule local correlation methodology: Merging coupled-cluster and møller-plesset perturbation theories. J Phys Chem A, 2010, 114: 6721–6727

    Article  CAS  Google Scholar 

  20. Li W, Guo Y, Li S. A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems. Phys Chem Chem Phys, 2012, 14: 7854–7862

    Article  CAS  Google Scholar 

  21. DePrince AE III, Mazziotti DA. Exploiting the spatial locality of electron correlation within the parametric two-electron reduced-density-matrix method. J Chem Phys, 2010, 132: 034110-1–9

    Article  Google Scholar 

  22. Rolik Z, Kallay M. A general-order local coupled-cluster method based on the cluster-in-molecule approach. J Chem Phys, 2011, 135: 104111-1–18

    Article  Google Scholar 

  23. Kristensen K, Ziolkowski M, Jansik B, Kjaergaard T, Jorgensen P. A locality analysis of the divide-expand-consolidate coupled cluster amplitude equations. J Chem Theory Comput, 2011, 7: 1677–1694

    Article  CAS  Google Scholar 

  24. Stoll H. The correlation energy of crystalline silicon. Chem Phys Lett, 1992, 191: 548–552

    Article  CAS  Google Scholar 

  25. Stoll H, Paulus B, Fulde P. On the accuracy of correlation-energy expansions in terms of local increments. J Chem Phys, 2005, 123: 144108-1–9

    Article  Google Scholar 

  26. Friedrich J, Hanrath M, Dolg M. Fully automated implementation of the incremental scheme: Application to CCSD energies for hydrocarbons and transition metal compounds. J Chem Phys, 2007, 126: 154110-1–7

    Article  Google Scholar 

  27. Friedrich J, Dolg M. Fully automated incremental evaluation of MP2 and CCSD(T) energies: Application to water clusters. J Chem Theory Comput, 2009, 5: 287–294

    Article  CAS  Google Scholar 

  28. Li W, Piecuch P, Gour JR. Local correlation calculations using standard and renormalized coupled-cluster methods. In: AIP Conference Proceedings, Vol. 1102, Theory and Applications of Computational Chemistry 2008. Eds. Wei DQ, Wang XJ. Melville: AIP, 2009, pp. 68–113

    Google Scholar 

  29. Li W, Piecuch P, Gour JR. Linear scaling local correlation extensions of the standard and renormalized coupled-cluster methods. In: Progress in Theoretical Chemistry and Physics, Vol. 19, Advances in the Theory of Atomic and Molecular Systems: Conceptual and Computational Advances in Quantum Chemistry. Eds. Piecuch P, Maruani J, Delgado-Barrio G, Wilson S. Netherlands: Springer, 2009, pp. 131–195

    Chapter  Google Scholar 

  30. Li S, Li W, Fang T. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. J Am Chem Soc, 2005, 127: 7215–7226

    Article  CAS  Google Scholar 

  31. Li W, Li S, Jiang Y. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. J Phys Chem A, 2007, 111: 2193–2199

    Article  CAS  Google Scholar 

  32. Li W. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions. J Chem Phys, 2013, 138: 014106

    Article  Google Scholar 

  33. Deev V, Collins MA. Approximate ab initio energies by systematic molecular fragmentation. J Chem Phys, 2005, 122: 154102-1–12

    Google Scholar 

  34. Flocke N, Bartlett RJ. Correlation energy estimates in periodic extended systems using the localized natural bond orbital coupled cluster approach. J Chem Phys, 2003, 118: 5326–5334

    Article  CAS  Google Scholar 

  35. Flocke N, Bartlett RJ. A natural linear scaling coupled-cluster method. J Chem Phys, 2004, 121: 10935–10944

    Article  CAS  Google Scholar 

  36. Li W, Li S. Divide-and-conquer local correlation approach to the correlation energy of large molecules. J Chem Phys, 2004, 121: 6649–6657

    Article  CAS  Google Scholar 

  37. Kobayashi M, Imamura Y, Nakai H. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. J Chem Phys, 2007, 127: 074103-1–8

    Google Scholar 

  38. Kobayashi M, Nakai H. Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. J Chem Phys, 2009, 131: 114108-1–9

    Article  Google Scholar 

  39. Fedorov DG, Kitaura K. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys, 2004, 121: 2483–2490

    Article  CAS  Google Scholar 

  40. Fedorov DG, Kitaura K. Coupled-cluster theory based upon the fragment molecular-orbital method. J Chem Phys, 2005, 123: 134103-1–11

    Article  Google Scholar 

  41. Li S, Li W, Ma J. A quick estimate of the correlation energy for alkanes. Chinese J Chem, 2003, 21: 1422–1429

    Article  CAS  Google Scholar 

  42. Arora P, Li W, Piecuch P, Evans JW, Albao M, Gordon MS. Diffusion of Atomic Oxygen on the Si(100) Surface. J Phys Chem C, 2010, 114: 12649–12658

    Article  CAS  Google Scholar 

  43. Kozlowski PM, Kumar M, Piecuch P, Li W, Bauman NP, Hansen JA, Lodowski P, Jaworska M. The cobalt-methyl bond dissociation in methylcobalamin: New benchmark analysis based on density functional theory and completely renormalized coupled-cluster calculations. J Chem Theory Comput, 2012, 8: 1870–1894

    Article  CAS  Google Scholar 

  44. Piecuch P, WŁoch M. Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. J Chem Phys, 2005, 123: 224105-1–10

    Article  Google Scholar 

  45. Boys SF. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys, 1960, 32: 296–299

    Article  CAS  Google Scholar 

  46. Guo Y, Li W, Li S. An efficient linear scaling procedure for constructing localized orbitals of large molecules based on the one-particle density matrix. J Chem Phys, 2011, 135: 134107-1–7

    Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. J Comput Chem, 1993, 14: 1347–1363

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, B.01. Wallingford CT: Gaussian, Inc., 2009

    Google Scholar 

  49. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000, 28: 235–242

    Article  CAS  Google Scholar 

  50. Ponder JW, Richards FM. An efficient newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 1987, 8: 1016–1024

    Article  CAS  Google Scholar 

  51. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104-1–19

    Article  Google Scholar 

  52. Zhao Y, Truhlar DG. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys, 2006, 125: 194101-1–18

    Google Scholar 

  53. Zhao Y, Truhlar DG. Size-selective supramolecular chemistry in a hydrocarbon nanoring. J Am Chem Soc, 2007, 129: 8440–8442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuHua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Li, S. Cluster-in-molecule local correlation method for large systems. Sci. China Chem. 57, 78–86 (2014). https://doi.org/10.1007/s11426-013-5022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5022-6

Keywords

Navigation