Skip to main content
Log in

Wild-type and molten globular chorismate mutase achieve comparable catalytic rates using very different enthalpy/entropy compensations

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The origin of the catalytic power of enzymes with a meta-stable native state, e.g. molten globular state, is an unsolved challenging issue in biochemistry. To help understand the possible differences between this special class of enzymes and the typical ones, we report here computer simulations of the catalysis of both the well-folded wild-type and the molten globular mutant of chorismate mutase. Using the ab initio quantum mechanical/molecular mechanical minimum free-energy path method, we determined the height of reaction barriers that are in good agreement with experimental measurements. Enzyme-substrate interactions were analyzed in detail to identify factors contributing to catalysis. Computed angular order parameters of backbone N-H bonds and side-chain methyl groups suggested site-specific, non-uniform rigidity changes of the enzymes during catalysis. The change of conformational entropy from the ground state to the transition state revealed distinctly contrasting entropy/enthalpy compensations in the dimeric wild-type enzyme and its molten globular monomeric variant. A unique catalytic strategy was suggested for enzymes that are natively molten globules: some may possess large conformational flexibility to provide strong electrostatic interactions to stabilize the transition state of the substrate and compensate for the entropy loss in the transition state. The equilibrium conformational dynamics in the reactant state were analyzed to quantify their contributions to the structural transitions enzymes needed to reach the transition states. The results suggest that large-scale conformational dynamics make important catalytic contributions to sampling conformational regions in favor of binding the transition state of substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfenden R. Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem Rev, 2006, 106(8): 3379–3396

    Article  CAS  Google Scholar 

  2. Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins: Struct Func & Bioinfo, 2010, 78(6): 1339–1375

    CAS  Google Scholar 

  3. Hammes-Schiffer S, Benkovic SJ. Relating protein motion to catalysis. Annu Rev Biochem, 2006, 75: 519–541

    Article  CAS  Google Scholar 

  4. Benkovic SJ, Hammes GG, Hammes-Schiffer S. Free-energy landscape of enzyme catalysis. Biochemistry, 2008, 47(11): 3317–3321

    Article  CAS  Google Scholar 

  5. Watt ED, Shimada H, Kovrigin EL, Loria JP. The mechanism of rate-limiting motions in enzyme function. Proc Natl Acad Sci USA, 2007, 104(29): 11981–11986

    Article  CAS  Google Scholar 

  6. Warshel A. Computer simulations of enzyme catalysis: Methods, progress, and insights. Annu Rev Biophys Biomol Struct, 2003, 32: 425–443

    Article  CAS  Google Scholar 

  7. Warshel A, Sharma PK, Kato M. Electrostatic basis for enzyme catalysis. Chem Rev, 2006, 106(8): 3210–3235

    Article  CAS  Google Scholar 

  8. Kamerlin SCL, Warshel A. Multiscale modeling of biological functions. Phys Chem Chem Phys, 2011, 13(22): 10401–10411

    Article  CAS  Google Scholar 

  9. Gao JL, Truhlar DG. Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem, 2002, 53: 467–505

    Article  CAS  Google Scholar 

  10. Hu H, Yang WT. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem, 2008, 59: 573–601

    Article  CAS  Google Scholar 

  11. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. How enzymes work: Analysis by modern rate theory and computer simulations. Science, 2004, 303(5655): 186–195

    Article  CAS  Google Scholar 

  12. Senn HM, Thiel W. Qm/mm methods for biomolecular systems. Angew Chem Int Ed, 2009, 48(7): 1198–1229

    Article  CAS  Google Scholar 

  13. Nam K, Prat-Resina X, Garcia-Viloca M, Devi-Kesavan LS, Gao J. Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase. J Am Chem Soc, 2004, 126(5): 1369–1376

    Article  CAS  Google Scholar 

  14. Gao JL. Catalysis by enzyme conformational change as illustrated by orotidine 5′-monophosphate decarboxylase. Curr Opinion Struct Biol, 2003, 13(2): 184–192

    Article  CAS  Google Scholar 

  15. Benkovic SJ, Hammes-Schiffer S. Biochemistry-enzyme motions inside and out. Science, 2006, 312(5771): 208–209

    Article  CAS  Google Scholar 

  16. Villa J, Strajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A. How important are entropic contributions to enzyme catalysis? Proc Natl Acad Sci USA, 2000, 97(22): 11899–11904

    Article  CAS  Google Scholar 

  17. Pisliakov AV, Cao J, Kamerlin SCL, Warshel A. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci, 2009, 106(41): 17359–17364

    Article  CAS  Google Scholar 

  18. Adamczyk AJ, Cao J, Kamerlin SCL, Warshel Arieh. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA, 2011, 108(34): 14115–14120

    Article  CAS  Google Scholar 

  19. Olsson MHM, Parson WW, Warshel A. Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis. Chem Rev, 2006, 106(5): 1737–1756

    Article  CAS  Google Scholar 

  20. Roca M, Messer B, Hilvert D, Warshel A. On the relationship between folding and chemical landscapes in enzyme catalysis. Proc Natl Acad Sci USA, 2008, 105(37): 13877–13882

    Article  CAS  Google Scholar 

  21. Wolfenden R, Snider MJ. The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res, 2001, 34(12): 938–945

    Article  CAS  Google Scholar 

  22. Cooper A, Dryden DTF. Allostery without conformational change-A plausible model. Eur Biophys J, 1984, 11(2): 103–109

    Article  CAS  Google Scholar 

  23. Ota N, Agard DA. Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. J Mol Biol, 2005, 351(2): 345–354

    Article  CAS  Google Scholar 

  24. Szefczyk B, Mulholland AJ, Ranaghan KE, Ranaghan, Sokalski WA Differential transition-state stabilization in enzyme catalysis: Quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J Am Chem Soc, 2004, 126(49): 16148–16159

    Article  CAS  Google Scholar 

  25. Strajbl M, Shurki A, Kato M, Warshel A. Apparent nac effect in chorismate mutase reflects electrostatic transition state stabilization. J Am Chem Soc, 2003, 125(34): 10228–10237

    Article  CAS  Google Scholar 

  26. Hur S, Bruice TC. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzy mes, and their mutants). J Am Chem Soc, 2003, 125(35): 10540–10542

    Article  CAS  Google Scholar 

  27. Guo H, Cui Q, Lipscomb WN, Karplus M. Substrate conformational transitions in the active site of chorismate mutase: Their role in the catalytic mechanism. Proc Natl Acad Sci USA, 2001, 98(16): 9032–9037

    Article  CAS  Google Scholar 

  28. Marti S, Andres J, Moliner V, Silla E, Tuñón I, Bertrán J, Field MJ. A hybrid potential reaction path and free energy study of the chorismate mutase reaction. J Am Chem Soc, 2001, 123(8): 1709–1712

    Article  CAS  Google Scholar 

  29. Vamvaca K, Vogeli B, Kast P, Pervushin K, Hilvert D. An enzymatic molten globule: Efficient coupling of folding and catalysis. Proc Natl Acad Sci USA, 2004, 101(35): 12860–12864

    Article  CAS  Google Scholar 

  30. Pervushin K, Vamvaca K, Vogeli B, Hilvert D. Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol, 2007, 14: 1202–1206

    Article  CAS  Google Scholar 

  31. Vamvaca K, Jelesarov I, Hilvert D. Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol, 2008, 382(4): 971–977

    Article  CAS  Google Scholar 

  32. Woycechowsky KJ, Choutko A, Vamvaca K, Hilvert D. Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry, 2008, 47(51): 13489–13496

    Article  CAS  Google Scholar 

  33. Roca M, Vardi-Kilshtain A, Warshel A. Toward accurate screening in computer-aided enzyme design. Biochemistry, 2009, 48(14): 3046–3056

    Article  CAS  Google Scholar 

  34. Hu H, Lu ZY, Yang WT. QM/MM minimum free-energy path: Methodology and application to triosephosphate isomerase. J Chem Theory Comput, 2007, 3(2): 390–406

    Article  CAS  Google Scholar 

  35. Hu H, Lu ZY, Parks JM, Burger SK, Yang W. Quantum mechanics/ molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface. J Chem Phys, 2008, 128(3): 034105

    Article  Google Scholar 

  36. Lee AY, Karplus PA, Ganem B, Clardy Jon. Atomic-structure of the buried catalytic pocket of escherichia-coli chorismate mutase. J Am Chem Soc, 199 Jon, (12): 3627–3628

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2): 926–935

    Article  CAS  Google Scholar 

  38. Essmann U, Perera L, Berkowitz M, Darden Tom, Lee H and Pedersen LG. J Chem Phys, 1995, 103: 8577–8593

    Article  CAS  Google Scholar 

  39. MacKerell Jr. AD, Bashford D, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D,. Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B, 1998, 102: 3586–3616

    Article  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 3684–3690

    Article  CAS  Google Scholar 

  41. Hu H, Yang WT. Development and application of ab initio qm/mm methods for mechanistic simulation of reactions in solution and in enzymes. J Mol Struct-Theochem, 2009, 898(1-3): 17–30

    Article  CAS  Google Scholar 

  42. Ayala PY, Schlegel HB. A combined method for determining reaction paths, minima, and transition state geometries. J Chem Phys, 1997, 107(2): 375–384

    Article  CAS  Google Scholar 

  43. Frisch MJTGW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS. Tomasi J. Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GAm, Nakatsuji H, Hada M, Ehara, M, Toyota K, Fukuda R.; Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski, JW, Ayala PY, Morokuma K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz J V, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Secondary. 2004

    Google Scholar 

  44. Choy WY, Shortle D, Kay LE. Side chain dynamics in unfolded protein states: An nmr based 2h spin relaxation study of d131d. J Am Chem Soc, 2003, 125(7): 1748–1758

    Article  CAS  Google Scholar 

  45. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D. Intrinsic dynamics of an enzyme underlies catalysis. Nature, 2005, 438(7064): 117–121

    Article  CAS  Google Scholar 

  46. Lee AL, Kinnear SA, Wand AJ. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol, 2000, 7(1): 72–77

    Article  CAS  Google Scholar 

  47. Lee AL, Wand AJ. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature, 2001, 411(6836): 501–504

    Article  CAS  Google Scholar 

  48. Fuentes EJ, Der CJ, Lee AL. Ligand-dependent dynamics and intramolecular signaling in a pdz domain. J Mol Biol, 2004, 335(4): 1105–1115

    Article  CAS  Google Scholar 

  49. Hu H, Clarkson MW, Hermans J, Lee AL. Increased rigidity of eglinc at acidic pH: Evidence from nmr spin relaxation and md simulations. Biochemistry, 2003, 42(47): 13856–13868

    Article  CAS  Google Scholar 

  50. Karplus M, Kushick JN. Methods for estimating the configurational entropy of macromolecules. Macromolecules, 1981, 14(2): 325–332

    Article  CAS  Google Scholar 

  51. Andricioaei I, Karplus M. On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys, 2001, 115(14): 6289–6292

    Article  CAS  Google Scholar 

  52. Fan Y, Cembran A, Ma S, Gao J. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase. Biochemistry, 2013, 52(12): 2036–2049

    Article  CAS  Google Scholar 

  53. Strater N, Hakansson K, Schnappauf G, Braus G, Lipscomb WN. Crystal structure of the T state of allosteric yeast chorismate mutase and comparison with the R state. Proc Natl Acad Sci USA, 1996, 93(8): 3330–3334

    Article  CAS  Google Scholar 

  54. Strajbl M, Sham YY, Villa J, Chu ZT, Warshel A. Calculations of activation entropies of chemical reactions in solution. J Phys Chem B, 2000, 104(18): 4578–4584

    Article  CAS  Google Scholar 

  55. Shurki A, Strajbl M, Villa J, Warshel A. How much do enzymes really gain by restraining their reacting fragments? J Am Chem Soc, 2002, 124(15): 4097–4107

    Article  CAS  Google Scholar 

  56. Galopin CC, Zhang S, Wilson DB, Bruce Ganem. On the mechanism of chorismate mutases: Clues from wild-type E-coli enzyme and a site-directed mutant related to yeast chorismate mutase. Tetra Lett, 1996, 37(48): 8675–8678

    Article  CAS  Google Scholar 

  57. Galopin CC, Zhang S, Wilson DB, Bruce Ganem. On the mechanism of chorismate mutases: Clues from wild-type E-coli enzyme and a site-directed mutant related to yeast chorismate mutase (vol 37, pg 8675, 1996). Tetra Lett, 1997, 38(9): 1467–1467

    CAS  Google Scholar 

  58. Warshel A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J Biol Chem, 1998, 273(42): 27035–27038

    Article  CAS  Google Scholar 

  59. Li L, Weinreb V, Francklyn C, Carter CWJ. Histidyl-trna synthetase urzymes class i and ii aminoacyl tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. J Biol Chem, 2011, 286(12): 10387–10395

    Article  CAS  Google Scholar 

  60. Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW. Tryptophanyl-trna synthetase urzyme: A model to recapitulate molecular evolution and investigate intramolecular complementation. J Biol Chem, 2010, 285(49): 38590–38601

    Article  CAS  Google Scholar 

  61. Daggett V, Levitt M. A model of the molten globule state from molecular-dynamics simulations. Proc Natl Acad Sci USA, 1992, 89(11): 5142–5146

    Article  CAS  Google Scholar 

  62. Mark AE, Van Gunsteren WF. Simulation of the thermal-denaturation of hen egg-white lysozyme-trapping the molten globule state. Biochemistry, 1992, 31(34): 7745–7748

    Article  CAS  Google Scholar 

  63. Zhang S, Pohnert G, Kongsaeree P, Wilson DB, Clardy J, Ganem B. Chorismate mutase-prephenate dehydratase from escherichia colistudy of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem, 1998, 273(11): 6248–6253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H. Wild-type and molten globular chorismate mutase achieve comparable catalytic rates using very different enthalpy/entropy compensations. Sci. China Chem. 57, 156–164 (2014). https://doi.org/10.1007/s11426-013-5021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5021-7

Keywords

Navigation