Skip to main content

Advertisement

Log in

Nanoprobes for super-resolution fluorescence imaging at the nanoscale

  • Reviews
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Compared with other imaging techniques, fluorescence microscopy has become an essential tool to study cell biology due to its high compatibility with living cells. Owing to the resolution limit set by the diffraction of light, fluorescence microscopy could not resolve the nanostructures in the range of < 200 nm. Recently, many techniques have been emerged to overcome the diffraction barrier, providing nanometer spatial resolution. In the course of development, the progress in fluorescent probes has helped to promote the development of the high-resolution fluorescence nanoscopy. Here, we describe the contributions of the fluorescent probes to far-field super resolution imaging, focusing on concepts of the existing super-resolution nanoscopy based on the photophysics of fluorescent nanoprobes, like photoswitching, bleaching and blinking. Fluorescent probe technology is crucial in the design and implementation of super-resolution imaging methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikr Anat, 1873, 9: 413–420

    Article  Google Scholar 

  2. Gu M. Principles of Three-dimensional Imaging in Cofocal Microscopes. Singapore: World Scientific, 1996

    Book  Google Scholar 

  3. Born M, Wolf E. Principles of Optics. Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  4. Rayleigh L. On the manufacture and theory of diffraction-gratings. Philos Mag, 1874, 47: 193–205

    Google Scholar 

  5. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods, 2005, 2: 932–940

    Article  CAS  Google Scholar 

  6. Hell SW. Far-field optical nanoscopy. Science, 2007, 316: 1153–1158

    Article  CAS  Google Scholar 

  7. Hell SW. Microscopy and its focal switch. Nat Methods, 2008, 6: 24–32

    Article  Google Scholar 

  8. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: Super-resolution imaging of cells. Cell, 2010, 143: 1047–1058

    Article  CAS  Google Scholar 

  9. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Nat Acad Sci USA, 2007, 104: 20308–20313

    Article  CAS  Google Scholar 

  10. Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, Hell SW. Dual-color sted microscopy at 30-nm focal-plane resolution. Small, 2008, 4: 1095–1100

    Article  CAS  Google Scholar 

  11. Xu K, Babcock HP, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods, 2012, 9: 185–188

    Article  CAS  Google Scholar 

  12. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods, 2008, 5: 527–529

    Article  CAS  Google Scholar 

  13. Eggeling C, Willig KI, Barrantes FJ. STED microscopy of living cells-New frontiers in membrane and neurobiology. J Neurochem, 2013, 126: 203–212

    Article  CAS  Google Scholar 

  14. Shroff H, Galbraith CG, Galbraith JA, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods, 2008, 5: 417–423

    Article  CAS  Google Scholar 

  15. Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA, 2005, 102: 17565–17569

    Article  CAS  Google Scholar 

  16. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated-emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett, 1994, 19: 780–782

    Article  CAS  Google Scholar 

  17. Hell SW, Kroug M. Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl Phys B, 1995, 60: 495–497

    Article  Google Scholar 

  18. Chen JF, Cheng Y. Far-field superresolution imaging with dual-dye-doped nanoparticles. Opt Lett, 2009, 34: 1831–1833

    Article  Google Scholar 

  19. Gustafsson MGL. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA, 2005, 102: 13081–13086

    Article  CAS  Google Scholar 

  20. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 2008, 320: 246–249

    Article  CAS  Google Scholar 

  21. Lauterbach MA, Keller J, Schönle A, Kamin D, Westphal V, Rizzoli SO, Hell SW. Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J Biophoton, 2010, 3: 417–424

    Article  Google Scholar 

  22. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313: 1642–1645

    Article  CAS  Google Scholar 

  23. Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006, 91: 4258–4272

    Article  CAS  Google Scholar 

  24. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006, 3: 793–795

    Article  CAS  Google Scholar 

  25. Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods, 2008, 5: 943–945

    Article  Google Scholar 

  26. Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Nat Acad Sci USA, 2006, 103: 18911–18916

    Article  CAS  Google Scholar 

  27. Guttler F, Irngartinger T, Plakhotnik T, Renn A, Wild UP. Fluorescence microscopy of single molecules. Chem Phys Lett, 1994, 217: 393–397

    Article  Google Scholar 

  28. van Oijen AM, Köhler J, Schmidt J, Müller M, Brakenhoff GJ. 3-Dimensional super-resolution by spectrally selective imaging. Chem Phys Lett, 1998, 292: 183–187

    Article  Google Scholar 

  29. Re T, Barbetta L, Dall’Asta C, Faglia G, Ambrosi B. Comparison between buserelin and dexamethasone testing in the assessment of hirsutism. J Endocrinol Invest, 2002, 25: 84–90

    CAS  Google Scholar 

  30. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 2003, 300: 2061–2065

    Article  CAS  Google Scholar 

  31. Scherer NF. Imaging: Pointillist microscopy. Nat Nanotech, 2006, 1: 19–20

    Article  Google Scholar 

  32. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Pro Natl Acad Sci USA, 2009, 106: 2995–2999

    Article  CAS  Google Scholar 

  33. Huang B, Jones SA, Brandenburg B, Zhuang X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods, 2008, 5: 1047–1052

    Article  CAS  Google Scholar 

  34. Gould TJ, Gunewardene MS, Gudheti MV, Verkhusha VV, Yin SR, Gosse JA, Hess ST. Nanoscale imaging of molecular positions and anisotropies. Nat methods, 2008, 5: 1027–1030

    Article  CAS  Google Scholar 

  35. Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi GQ, Zhuang X. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA, 2012, 109: 13978–13983

    Article  CAS  Google Scholar 

  36. Fernandez-Suarez M, Ting AY. Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol, 2008, 9: 929–943

    Article  CAS  Google Scholar 

  37. Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Correa Jr IR, Luo Z, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K. A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins. Nat Chem, 2013, 5: 132–139

    Article  CAS  Google Scholar 

  38. Vaughan JC, Dempsey GT, Sun E, Zhuang X. Phospine quenching of cyanin dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc, 2013, 135: 1197–1200

    Article  CAS  Google Scholar 

  39. Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol, 2011, 29: 942–947

    Article  CAS  Google Scholar 

  40. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 2011, 478: 204–208

    Article  CAS  Google Scholar 

  41. Andresen M, Stiel AC, Fölling J, Wenzel D, Schönle A, Egner A, Eggeling C, Hell SW, Jakobs S. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol, 2008, 26: 1035–1040

    Article  CAS  Google Scholar 

  42. Lichtman JW, Conchello JA. Fluorescence microscopy. Nat methods, 2005, 2: 910–919

    Article  CAS  Google Scholar 

  43. Willig KI, Harke B, Medda R, Hell SW. STED microscopy with continuous wave beams. Nat Methods, 2007, 4: 915–918

    Article  CAS  Google Scholar 

  44. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA, 2006, 103: 11440–11445

    Article  CAS  Google Scholar 

  45. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics, 2009, 3: 144–147

    Article  CAS  Google Scholar 

  46. Bretschneider S, Eggeling C, Hell SW. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phy Rev Lett, 2007, 98: 218103

    Article  Google Scholar 

  47. Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P. Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc, 2008, 130: 16840–16841

    Article  CAS  Google Scholar 

  48. Kolmakov K, Belov VN, Bierwagen J, Ringemann C, Müller V, Eggeling C, Hell SW. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem A Europ J, 2010, 16: 158–166

    Article  CAS  Google Scholar 

  49. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL. A bright and photostable photoconvertible fluorescent protein. Nat methods, 2009, 6: 131–133

    Article  CAS  Google Scholar 

  50. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods, 2009, 6: 153–159

    Article  CAS  Google Scholar 

  51. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods, 2012, 9: 582–584

    Article  CAS  Google Scholar 

  52. Sauer M, Heilemann M, Margeat E, Kasper R, Tinnefeld P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc, 2005, 127: 3801–3806

    Article  Google Scholar 

  53. Bates M, Huang B, Dempsey GT, Zhuang X. Multicolor super-resolutionimaging with photo-switchablefluorescent probes. Science, 2007, 317:1749–1753

    Article  CAS  Google Scholar 

  54. Bierwagen J, Testa I, Fölling J, Wenzel D, Jakobs S, Eggeling C, Hell SW. Far-field autofluorescence nanoscopy. Nano Lett, 2010, 10: 4249–4252

    Article  CAS  Google Scholar 

  55. Burnette DT, Sengupta P, Dai YH, Lippincott-Schwartz J, Kachar B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci USA, 2011, 108: 21081–21086

    Article  CAS  Google Scholar 

  56. Hoyer P, Staudt T, Engelhardt J, Hell SW. Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Lett, 2011, 11: 245–250

    Article  CAS  Google Scholar 

  57. Dertingera T, Colyera R, Iyera G, Weissa S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA, 2009, 106: 22287–22292

    Article  Google Scholar 

  58. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383: 802–804

    Article  CAS  Google Scholar 

  59. Cordero SR, Carson PJ, Estabrook RA, Strouse GF, Buratto SK. Photo-activated luminescence of CdSe quantum dot monolayers. J Phys Chem B, 2000, 104: 12137–12142

    Article  CAS  Google Scholar 

  60. van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Gerritsen HC, Bol AA, van Lingen JNJ, de Mello Donegá C, Meijerink A. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B, 2001, 105: 8281–8284

    Article  Google Scholar 

  61. van Sark WGJHM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. J Phys Chem, 2002, 3: 871–879

    Google Scholar 

  62. Dedecker P, Mo GCH, Dertinger T, Zhang J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci USA, 2012, 109: 10909–10914

    Article  CAS  Google Scholar 

  63. Selvin PR. Fluorescence resonance energy transfer. Biochem Spectrosc, 1995, 246: 300–334

    Article  CAS  Google Scholar 

  64. Jares-Erijman EA, Jovin TM. FRET imaging. Nature Biotechnol, 2003, 21: 1387–1395

    Article  CAS  Google Scholar 

  65. Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struc Biol, 2000, 7: 730–734

    Article  CAS  Google Scholar 

  66. Chen J, Cheng Y. Theoretical investigation on saturated Förster-Resonant-energy-transfer microscopy using FRET dye pairs as fluorescent probes. Opt Commun, 2012, 285: 1404–1407

    Article  CAS  Google Scholar 

  67. Deng S, Chen J, Huang Q, Fan C, Cheng Y. Saturated Forster resonance energy transfer microscopy with a stimulated emission depletion beam: A pathway toward single-molecule resolution in far-field bioimaging. Opt Lett, 2010, 35: 3862–3864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SuHui Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Liang, L., Deng, S. et al. Nanoprobes for super-resolution fluorescence imaging at the nanoscale. Sci. China Chem. 57, 100–106 (2014). https://doi.org/10.1007/s11426-013-5014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5014-6

Keywords

Navigation