Skip to main content
Log in

Synthesis, structure and property of one porous Zn(salen)-based metal-metallosalen framework

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral Schiff-base ligand L was synthesized through six steps in good overall yield from readily available 2-tert-butylphenol and was used to construct one chiral porous metal-metallosalen framework, [Zn53-OH)2(ZnL)4(H2O)2]·18H2O (1, L = 5′,5″-(1E, 1′E)-(1R, 2R)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(3′-tert-butyl-4′-hydroxybiphenyl-4-carboxylic acid), under mild reaction conditions. 1 was characterized by IR, TGA, CD, UV, PL, single-crystal and powder X-ray crystallography. The structure of 1 displays a 3-fold interpenetrating 3D framework with 1D channel of 1.14 nm × 0.58 nm and imparts unique Zn(salen) units on the surface of the pore, in which (ZnL)2 dimer acts as multi-functionlized metalloligand. 1 is thermally robust with network decomposition temperature of 400 °C and it also exhibits strong photoluminescence in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddaoudi M, David BM, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res, 2001, 34: 319–330

    Article  CAS  Google Scholar 

  2. Qiu SL, Zhu GS. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord Chem Rev, 2009, 253: 2891–2911

    Article  CAS  Google Scholar 

  3. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300: 1127–1129

    Article  CAS  Google Scholar 

  4. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev, 2009, 38: 1450–1459

    Article  CAS  Google Scholar 

  5. Murray LJ, Dincă M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev, 2009, 38: 1294–1314

    Article  CAS  Google Scholar 

  6. Chen B, Xiang S, Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res, 2010, 43: 1115–1124

    Article  CAS  Google Scholar 

  7. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev, 2009, 38: 1477–1504

    Article  CAS  Google Scholar 

  8. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Luminescent metal-organic frameworks. Chem Soc Rev, 2009, 38: 1330–1352

    Article  CAS  Google Scholar 

  9. Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal-organic frameworks. Chem Rev, 2011, 112: 1126–1162

    Article  Google Scholar 

  10. Cao AM, Hu JS, Wan LJ. Morphology control and shape evolution in 3D hierarchical superstructures. Sci China Chem, 2012, 55: 2249–2256

    Article  CAS  Google Scholar 

  11. Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev, 2009, 38: 1248–1256

    Article  CAS  Google Scholar 

  12. Ma L, Falkowski JM, Abney C, Lin W. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat Chem, 2010, 2: 838–846

    Article  CAS  Google Scholar 

  13. Xuan W, Zhu C, Liu Y, Cui Y. Mesoporous metal-organic framework materials. Chem Soc Rev, 2012, 41: 1677–1695

    Article  CAS  Google Scholar 

  14. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329: 424–428

    Article  CAS  Google Scholar 

  15. Zhao D, Timmons DJ, Yuan D, Zhou HC. Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res, 2010, 44: 123–133

    Article  Google Scholar 

  16. Cho S-H, Ma B, Nguyen ST, Hupp JT. Albrecht-Schmitt TE. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Comm, 2006, 24: 2563–2565

    Article  Google Scholar 

  17. Shultz AM, Sarjeant AA, Farha OK, Hupp JT, Nguyen ST. Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J Am Chem Soc, 2011, 133: 13252–13255

    Article  CAS  Google Scholar 

  18. Song F, Wang C, Falkowski JM, Ma L, Lin W. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J Am Chem Soc, 2010, 132: 15390–15398

    Article  CAS  Google Scholar 

  19. Yuan G, Zhu C, Liu Y, Cui Y. Nano- and microcrystals of a Mn-based metal-oligomer framework showing size-dependent magnetic resonance behaviors. Chem Comm, 2011, 47: 3180–3182

    Article  CAS  Google Scholar 

  20. Li G, Yu WB, N J, Liu TF, Liu Y, Sheng EH, Cui Y. Self-assembly of a homochiral nanoscale metallacycle from a metallosalen complex for enantioselective separation. Angew Chem Int Ed, 2008, 47: 1245–1249

    Article  CAS  Google Scholar 

  21. Li G, Yu W, Cui Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J Am Chem Soc, 2008, 130: 4582–4583

    Article  CAS  Google Scholar 

  22. Zhu C, Yuan G, Chen X, Yang Z, Cui Y. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J Am Chem Soc, 2012, 134: 8058–8061

    Article  CAS  Google Scholar 

  23. Zhu C, Xuan W, Cui Y. Luminescent microporous metal-metallosalen frameworks with the primitive cubic net. Dalton Trans, 2012, 41: 3928–3932

    Article  CAS  Google Scholar 

  24. Sheldrick GM. SHELXTL Version 5.1 Software reference manual. Madison, Wisconsin: Bruker AXS, Inc., 1997

    Google Scholar 

  25. Jeon YM, Heo J, Mirkin CA. Acid-functionalized dissymmetric salen ligands and their manganese(III) complexes. Tetrahedron Lett, 2007, 48: 2591–2595

    Article  CAS  Google Scholar 

  26. Jeon YM, Heo J, Mirkin CA. Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers. J Am Chem Soc, 2007, 129: 7480–7481

    Article  CAS  Google Scholar 

  27. Heo J, Jeon, YM, Mirkin CA. Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers. J Am Chem Soc, 2007, 129: 7712–7713

    Article  CAS  Google Scholar 

  28. Germain ME, Vargo TR, McClure BA, Rack JJ, Van Patten PG, Odoi M, Knapp MJ. Quenching Mechanism of Zn(Salicylaldimine) by Nitroaromatics. Inorg Chem, 2008, 47: 6203–6211

    Article  CAS  Google Scholar 

  29. Spek AL. PLATON, Version 1.62. Utrecht, Nederland: University of Utrecht, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cui.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Zhu, C. & Cui, Y. Synthesis, structure and property of one porous Zn(salen)-based metal-metallosalen framework. Sci. China Chem. 57, 107–113 (2014). https://doi.org/10.1007/s11426-013-5012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5012-8

Keywords

Navigation