Skip to main content
Log in

Analytical derivative techniques for TDDFT excited-state properties: Theory and application

  • Feature Articles
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We review our recent work on the methodology development of the excited-state properties for the molecules in vacuum and liquid solution. The general algorithms of analytical energy derivatives for the specific properties such as the first and second geometrical derivatives and IR/Raman intensities are demonstrated in the framework of the time-dependent density functional theory (TDDFT). The performance of the analytical approaches on the calculation of excited-state energy Hessian has also been shown. It is found that the analytical approaches are superior to the finite-difference method on the computational accuracy and efficiency. The computational cost for a TDDFT excited-state Hessian calculation is only 2–3 times as that for the DFT ground-state Hessian calculation. With the low computational complexity of the developed analytical approaches, it becomes feasible to realize the large-scale numerical calculations on the excited-state vibrational frequencies, vibrational spectroscopies and the electronic-structure parameters which enter the spectrum calculations of electronic absorption and emission, and resonance Raman spectroscopies for medium-to large-sized systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Head-Gordon M. Quantum chemistry and molecular processes. J Phys Chem, 1996, 100: 13213–13225

    Article  CAS  Google Scholar 

  2. Yamaguchi Y, Osamura Y, Goddard JD, Schaefer HF. A New Dimension to Quantum Chemistry: Analytical Derivative Methods in ab Initio Molecular Electronic Structure Theory. New York: Oxford, 1994

    Google Scholar 

  3. Pulay P. Direct use of the gradient for investigating molecular energy surfaces. In: Schaefer HF, ed. Applications of Electronic Structure Theory. New York: Plenum, 1977. 153

    Chapter  Google Scholar 

  4. Pople JA, Krishnan R, Schlegel HB, Binkley JS. Derivative studies in hartree-fock and moller-plesset theories. Int J Quantum Chem, 1979, 13: 225–241

    CAS  Google Scholar 

  5. Califano S. Vibrational State. New York: Wiley, 1976

    Google Scholar 

  6. Wilson EB, Decius JC, Cross PC. Molecular Vibrations. New York: Dover, 1981

    Google Scholar 

  7. Lee TJ, Scuseria GE. Electronic spectroscopy of diatomic molecules. In: Langhoff SR, ed. Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Dordrecht: Kluwer, 1994. 47–108

    Google Scholar 

  8. Handy NC, Amos RD, Gaw JF, Rice JE, Simandiras ED. The elimination of singularities in derivative calculations. Chem Phys Lett, 1985, 120: 151–158

    Article  CAS  Google Scholar 

  9. Fox DJ, Osamura Y, Hoffmann MR, Gaw JF, Fitzgerald G, Yamaguchi Y, Schaefer HF. Analytic energy second derivatives for general correlated wavefunctions, including a solution of the first-order coupled-perturbed configuration-interaction equations. Chem Phys Lett, 1983, 102: 17–19

    Article  CAS  Google Scholar 

  10. Koch H, Jensen HJA, Jørgensen P, Helgaker T, Scuseria GE, Schaefer HF. Coupled cluster energy derivatives: Analytic Hessian for the closed-shell coupled cluster singles and doubles wave function: Theory and applications. J Chem Phys, 1990, 92: 4924–4940

    Article  CAS  Google Scholar 

  11. Gauss J, Cremer D. Analytical energy gradients in Møller-Plesset perturbation and quadratic configuration interaction methods: Theory and application. Adv Quantum Chem, 1992, 23: 205–299

    Article  CAS  Google Scholar 

  12. Gauss J, Stanton JF, Bartlett RJ. Analytic ROHF-MBPT(2) second derivatives. J Chem Phys, 1992, 97: 7825–7828

    Article  CAS  Google Scholar 

  13. Kállay M, Gauss J. Analytic second derivatives for general coupled-cluster and configuration-interaction models. J Chem Phys, 2004, 120: 6841

    Article  Google Scholar 

  14. Liang WZ, Zhao Y, Head-Gordon M. An efficient approach for self-consistent-field energy and energy second derivatives in the atomic-orbital basis. J Chem Phys, 2005, 123: 194106

    Article  Google Scholar 

  15. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ. Toward a systematic molecular orbital theory for excited states. J Phys Chem, 1992, 96: 135–149

    Article  CAS  Google Scholar 

  16. Maurice D, Head-Gordon M. Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: Theory and application to benzo[a]pyrene and chalcone. Mol Phys, 1999, 96: 1533–1541

    Article  CAS  Google Scholar 

  17. Stanton JF. Many-body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation-of-motion coupled-cluster method. J Chem Phys, 1993, 99: 8840–8847

    Article  CAS  Google Scholar 

  18. Stanton JF, Gauss J. Many-body methods for excited state potential energy surfaces. II. Analytic second derivatives for excited state energies in the equation-of-motion coupled cluster method. J Chem Phys, 1995, 103: 8931–8943

    Article  CAS  Google Scholar 

  19. Osamura Y. Analytic expression of the second derivatives of electronic energy for full configuration interaction wave functions. Theor Chim Acta, 1989, 76: 113–124

    Article  CAS  Google Scholar 

  20. Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett, 1984, 52: 997–1000

    Article  CAS  Google Scholar 

  21. Casida ME. Recent Advances in Density Functional Methods. Part I. Singapore: World Scientific, 1995. 155–192

    Book  Google Scholar 

  22. Casida ME. Recent Developments and Applications of Moden Density Functional Theory. Amsterdam: Elsevier, 1996. 391

    Book  Google Scholar 

  23. Petersilka M, Gossmann UJ, Gross EKU. Excitation energies from time-dependent density-functional theory. Phys Rev Lett, 1996, 76: 1212–1215

    Article  CAS  Google Scholar 

  24. van Gisbergen SJA, Snijders JG, Baerends EJ. Implementation of time-dependent density functional response equations. Comput Phys Commun, 1999, 118: 119–138

    Article  Google Scholar 

  25. Maitra NT, Burke K, Appel H, Gross EKU, van Leeuwen R. Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of RG Parr. Singapore: World Scientific, 2001

    Google Scholar 

  26. Hirata S, Head-Gordon M. Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem Phys Lett, 1999, 314: 291–299

    Article  CAS  Google Scholar 

  27. Marques MAL, Gross EKU. Time-dependent density functional theory. Annu Rev Phys Chem, 2004, 55: 427–455

    Article  CAS  Google Scholar 

  28. Caillie CV, Amos RD. Geometric derivatives of excitation energies using SCF and DFT. Chem Phys Lett, 1999, 308: 249–255

    Article  Google Scholar 

  29. Caillie CV, Amos RD. Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. 2000, 317: 159–164

    Google Scholar 

  30. Hutter J. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework. J Chem Phys, 2003, 118: 3928–3934

    Article  CAS  Google Scholar 

  31. Furche F, Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys, 2002, 117: 7433–7447

    Article  CAS  Google Scholar 

  32. Rappoport D, Furche F. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. J Chem Phys, 2005, 122: 064105

    Article  Google Scholar 

  33. Cammi R, Mennucci B, Tomasi J. Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. J Phys Chem A, 2000, 104: 5631–5637

    Article  CAS  Google Scholar 

  34. Chiba M, Tsuneda T, Hirao K. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory. J Chem Phys, 2006, 124: 144106

    Article  Google Scholar 

  35. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys, 2006, 124: 094107

    Article  Google Scholar 

  36. Thorvaldsen AJ, Ruud K, Kristensen K, Jørgensen P, Coriani S. A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. J Chem Phys, 2008, 129: 214108

    Article  Google Scholar 

  37. Coriani S, Kæjrgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp, 2010, 6: 1208–1047

    Article  Google Scholar 

  38. Liu F, Gan Z, Shao Y, Hsu CP, Dreuw A, Head-Gordon M, Miller BT, Brooks BR, Yu JG, Furlani TR, Kong J. A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm-Dancoff approximation. Mol Phys, 2010, 108: 2791–2800

    Article  CAS  Google Scholar 

  39. Liu J, Liang WZ. Molecular-orbital-free algorithm for the excited-state force in time-dependent density functional theory. J Chem Phys, 2011, 134: 044114

    Article  Google Scholar 

  40. Seth M, Mazur G, Ziegler T. Time-dependent density functional theory gradients in the Amsterdam density functional package: Geometry optimizations of spin-flip excitations. Theor Chim Acta, 2011, 129: 331–342

    CAS  Google Scholar 

  41. Liu J, Liang WZ. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation. J Chem Phys, 2011, 135: 014113

    Article  Google Scholar 

  42. Liu J, Liang WZ. Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance. J Chem Phys, 2011, 135: 0184111

    Article  Google Scholar 

  43. Liu J, Liang WZ. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model. J Chem Phys, 2013, 138: 024101

    Article  Google Scholar 

  44. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio Jr. RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata A, Hsu C, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang WZ, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett A C, Subotnik JE, Woodcock III HL, Zhang W, Bell AT, Chakraborty AK, Head-Gordon M. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys, 2006, 8: 3172–3191

    Article  CAS  Google Scholar 

  45. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  46. Becke AD. A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys, 1993, 98: 1372–1377

    Article  CAS  Google Scholar 

  47. Handy NC, Schaefer HF. On the evaluation of analytic energy derivatives for correlated wave functions. J Chem Phys, 1984, 81: 5031–5033

    Article  CAS  Google Scholar 

  48. Neugebauer J, Reiher M, Kind C, Hess BA. Quantum chemical calculation of vibrational spectra of large molecules Raman and IR spectra for buckminsterfullerene. J Comput Chem, 2012, 23: 895–910

    Article  Google Scholar 

  49. Placzek G. Der anomale kathoden fall. In: Marx E, ed. Handbuch der Radiologie. Leipzig: Akademische Verlagsge sellschaft, 1934

    Google Scholar 

  50. Tomasi J, Persico M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem Rev, 1994, 94: 2027–2094

    Article  CAS  Google Scholar 

  51. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev, 2005, 105: 2999–3093

    Article  CAS  Google Scholar 

  52. Yang Y, Li H. Excited state geometry of photoactive yellow protein chromophore: A combined conductor-like polarizable continuum model and time-dependent density functional study. J Chem Phys, 2010, 133: 034108

    Article  Google Scholar 

  53. Si D, Li H. Analytic energy gradient in combined time-dependent density functional theory and polarizable force field calculation. J Chem Phys, 2010, 133: 144112

    Article  Google Scholar 

  54. McHale JL. Molecular Spectroscopy. Upper Saddle River: Prentice Hall, 1999

    Google Scholar 

  55. Kramers HA, Heisenberg W. Über die streuung von strahlung durch atome. Z Phys, 1925, 31: 681–708

    Article  CAS  Google Scholar 

  56. Dirac PAM. The quantum theory of dispersion. Proc R Soc London Ser A, 1927, 114: 710–728

    Article  Google Scholar 

  57. Liang WZ, Zhao Y, Sun J, Song J, Hu SL, Yang JL. Electronic excitation of polyfluorenes: A theoretical study. J Phys Chem B, 2006, 110: 9908–9915

    Article  CAS  Google Scholar 

  58. Gao F, Zhao Y, Liang WZ. Vibrationally resolved absorption and emission spectra of Rubrene multichromophores: Temperature and aggregation effects. J Phys Chem A, 2009, 113: 12847–12856

    Article  CAS  Google Scholar 

  59. Gao F, Zhao Y, Liang WZ. Vibronic spectra of perylene bisimide oligomers: Effects of intermolecular charge-transfer excitation and conformational flexibility. J Phys Chem B, 2011, 115: 2699–2708

    Article  CAS  Google Scholar 

  60. Gao F, Liang WZ, Zhao Y. Theoretical studies of vibrationally resolved absorption and emission spectra: From a single chromophore to multichromophoric oligomers/aggregates. Sci China Chem, 2010, 53: 297–309

    Article  CAS  Google Scholar 

  61. Heller EJ. Time-dependent approach to semiclassical dynamics. J Chem Phys, 1975, 62: 1544–1555

    Article  CAS  Google Scholar 

  62. Heller EJ. Quantum corrections to classical photodissociation models. J Chem Phys, 1978, 68: 2066–2075

    Article  CAS  Google Scholar 

  63. Lee SY, Heller EJ. Time-dependent theory of Raman scattering. J Chem Phys, 1979, 71: 4777–4788

    Article  CAS  Google Scholar 

  64. Ma HL, Liu J, Liang WZ. Time-dependent spproach to resonance Raman spectra including Duschinsky rotation and Herzberg-Teller effects: Formalism and its realistic applications. J Chem Theory Comput, 2012, 8: 4474–4482

    Article  CAS  Google Scholar 

  65. Edwards L, Dolphin DH, Gouterman M, Adler AD. Porphyrins XV II. Vapor absorption spectra and redox reactions: Tetraphenyl-porphins and porphin. J Mol Spectrosc, 1971, 38: 16–32

    Article  CAS  Google Scholar 

  66. Minaev B, Wang YH, Wang GK, Luo Y, Ågren H. Density functional theory study of vibronic structure of the first absorption Qx band in free-base porphin. Spectroc Acta Pt A Molec Biomolec Spectr, 2006, 65: 308–323

    Article  Google Scholar 

  67. Santoro F, Lami A, Improta R, Bloino J, Barone V. Effective method for Rhe computation of optical spectra of large molecules at finite temperature including the duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. J Chem Phys, 2008, 128: 224311

    Article  Google Scholar 

  68. Niu Y, Peng Q, Deng CM, Gao X, Shuai ZG. Theory of excited state decays and optical spectra: Application to polyatomic molecules. J Phys Chem A, 2010 114: 7817–7831

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanZhen Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Liu, J., Ma, H. et al. Analytical derivative techniques for TDDFT excited-state properties: Theory and application. Sci. China Chem. 57, 48–57 (2014). https://doi.org/10.1007/s11426-013-5006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5006-6

Keywords

Navigation