Skip to main content
Log in

A bifunctional, colorimetric and fluorescent probe for recognition of Cu2+ and Hg2+ and its application in molecular logic gate

  • Articles
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A bifunctional probe 1 with iminocoumarin scaffold demonstrated different responses for Cu2+ and Hg2+. In fluorescence mode of probe 1, the intensity at 528 nm was quenched severely upon the addition of Cu2+ or Hg2+. Meanwhile, a new fluorescence band at 574 nm appeared in the case of Hg2+. In its UV-Vis absorption mode, significant hypochromic shift for Cu2+ and bathochromic shift for Hg2+ occurred, which are in agreement with the observation of distinct color changes. In addition, probe 1 can be used for the construction of a molecular logic gate with NOR and INHIBIT logic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan L, Lin W, Xie Y, Chen B, Zhu S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J Am Chem Soc, 2012, 134: 1305–1315

    Article  CAS  Google Scholar 

  2. Wang J. Lin W, Li W. Single fluorescent probe displays a distinct response to Zn2+ and Cd2+. Chem Eur J, 2012, 18, 13629–13632

    Article  CAS  Google Scholar 

  3. Zheng ZB, Duan ZM, Ma YY, Wang KZ. Highly sensitive and selective difunctional ruthenium(II) complex-based chemosensor for dihydrogen phosphate anion and ferrous cation. Inorg Chem, 2013, 52: 2306–2316

    Article  CAS  Google Scholar 

  4. Guo Z, Zhu W, Shen L, Tian H. A fluorophore capable of crossword puzzles and logic memory. Angew Chem Int Ed, 2007, 46: 5549–5553

    Article  CAS  Google Scholar 

  5. Kumar M, Reja SI, Bhalla V. A charge transfer amplified fluorescent Hg2+ complex for detection of picric acid and construction of logic functions. Org Lett, 2012, 14: 6084–6087

    Article  CAS  Google Scholar 

  6. Kaur P, Kaur S, Singh K. Bis(N-methylindolyl)methane-based chemical probes for Hg2+ and Cu2+ and molecular IMPLICATION gate operating in fluorescence mode. Org Biomol Chem, 2012, 10: 1497–1501

    Article  CAS  Google Scholar 

  7. Dong M, Wang YW, Peng Y. Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media. Org Lett, 2010, 12: 5310–5313

    Article  CAS  Google Scholar 

  8. Dong YM, Peng Y, Dong M, Wang YW. A selective, sensitive, and chromogenic chemodosimeter for cyanide based on the 1,1′-Binaphthyl scaffold. J Org Chem, 2011, 76: 6962–6966

    Article  CAS  Google Scholar 

  9. Dong M, Peng Y, Dong YM, Tang N, Wang YW. A selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1,1′-Binaphthyl scaffold. Org Lett, 2012, 14: 130–133

    Article  CAS  Google Scholar 

  10. Peng Y, Dong YM, Dong M, Wang YW. A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(II) ions with “off-on-off” switching in ethanol-water solution. J Org Chem, 2012, 77: 9072–9080

    Article  CAS  Google Scholar 

  11. Sun X, Wang YW, Peng Y. A selective and ratiometric bifunctional fluorescent probe for Al3+ ion and proton. Org Lett, 2012, 14: 3420–3423

    Article  CAS  Google Scholar 

  12. Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev. 2006, 106: 1995–2044

    Article  CAS  Google Scholar 

  13. Onyido I, Norris AR, Buncel E. Biomolecule-mercury interactions: Modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev, 2004, 104: 5911–5929

    CAS  Google Scholar 

  14. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem Rev, 2008, 108: 1517–1549

    Article  CAS  Google Scholar 

  15. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions. Chem Soc Rev. 2008, 37: 1465–1472.

    Article  CAS  Google Scholar 

  16. Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev, 2008, 108: 3443–3480

    Article  CAS  Google Scholar 

  17. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo T, Kim JS. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J Am Chem Soc, 2009, 131: 2008–2012

    Article  CAS  Google Scholar 

  18. Dong M, Ma TH, Zhang AJ, Dong YM, Wang YW, Peng Y. A series of highly sensitive and selective fluorescent and colorimetric “off-on” chemosensors for Cu (II) based on rhodamine derivatives. Dyes Pigm, 2010, 87: 164–172

    Article  CAS  Google Scholar 

  19. Kim D, Yamamoto K, Ahn KH. A BODIPY-based reactive probe for ratiometric fluorescence sensing of mercury ions. Tetrahedron, 2012, 68: 5297–5282

    Article  Google Scholar 

  20. Soh JH, Swamy KMK, Kim SK, Kim S, Lee SH, Yoon J. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett, 2007, 48: 5966–5969

    Article  CAS  Google Scholar 

  21. Komatsu K, Urano Y, Kojima H, Nagano T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc, 2007, 129: 13447–13454

    Article  CAS  Google Scholar 

  22. Kim TI, Kim H, Choi Y, Kim Y. A fluorescent turn-on probe for the detection of alkaline phosphatase activity in living cells. Chem Commun, 2011, 47: 9825–9827

    Article  CAS  Google Scholar 

  23. Kim HJ, Kim Y, Kim, SJ, Park SY, Lee SY, Kim JH, No K, Kim JS. Iminocoumarin-based Hg(II) ion probe. Bull Korean Chem Soc, 2010, 31: 230–233

    Article  Google Scholar 

  24. Ahamed BN, Ghosh P. Selective colorimetric and fluorometric sensing of Cu(II) by iminocoumarin derivative in aqueous buffer. Dalton Trans, 2011, 40: 6411–6419

    Article  CAS  Google Scholar 

  25. Chang JH, Choi YM, Shin YK. A significant fluorescence quenching of anthrylaminobenzocrown ethers by paramagnetic metal cations. Bull Korean Chem Soc, 2001, 22: 527–530

    CAS  Google Scholar 

  26. Lee H, Lee HS, Reibenspies JH, Hancock RD. Mechanism of “turn-on” fluorescent sensors for mercury(II) in solution and its implications for ligand design. Inorg Chem, 2012, 51: 10904–10915

    Article  CAS  Google Scholar 

  27. For the method employed, see: Benesi HA, Hildebrand JH. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc, 1949, 71: 2703–2707

    Article  CAS  Google Scholar 

  28. For the method employed, see: Tong C, Xiang G. Sensitive determination of enoxacin by its enhancement effect on the fluorescence of terbium(III)-sodium dodecylbenzene sulfonate and its luminescence mechanism. J Lumin, 2007, 126: 575–580. See also ref. 10.

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision E.01, Gaussian, Inc.: Wallingford, CT, 2004

    Google Scholar 

  30. Ko KC, Wu JS, Kim HJ, Kwon PS, Kim JW, Bartsch RA, Lee JY, Kim JS. Rationally designed fluorescence ‘turn-on’ sensor for Cu2+. Chem Commun, 2011, 47: 3165–3167

    Article  CAS  Google Scholar 

  31. For the structure analysis about similar copper complex, see refs. 10 and 24

  32. de Silva AP, Gunaratne HQN, McCoy CP. A molecular photoionic AND gate based on fluorescent signalling. Nature, 1993, 364: 42–44

    Article  Google Scholar 

  33. de Silva AP. Molecular logic gate arrays. Chem Asian J, 2011, 6: 750–757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wang, Y. & Peng, Y. A bifunctional, colorimetric and fluorescent probe for recognition of Cu2+ and Hg2+ and its application in molecular logic gate. Sci. China Chem. 57, 289–295 (2014). https://doi.org/10.1007/s11426-013-4999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4999-1

Keywords

Navigation