Skip to main content
Log in

Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity

  • Articles
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Polyurethanes (PUs) are well-known for their biocompatibility but their intrinsic inert property hampers cell-matrix interactions. Surface modifications are thus necessary to widen their use for biomedical applications. In this work, surface modifications of PU were achieved first by incorporating polyhedral oligomeric silsesquioxane (POSS), followed by alteration of the surface topography via the breath figures method. Subsequently, surface chemistry was also modified by immobilization of gelatin molecules through grafting, for the enhancement of the surface cytocompatibility. Scanning electron microscopy (SEM) was used to verify the formation of highly ordered microstructures while static contact angle, FTIR and XPS confirmed the successful grafting of gelatin molecules onto the surfaces. In vitro culture of human umbilical vein endothelial cells (HUVECs) revealed that endothelial cell adhesion and proliferation were significantly enhanced on the gelatin-modified surfaces, as shown by live/dead staining and WST-1 proliferation assay. The results indicated that the combination of the strategies yielded an interface that improves cell attachment and subsequent growth. This enhancement is important for the development of higher quality biomedical implants such as vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roger VL. Heart disease and stroke statistics-2012 update: A report from the American heart association. Circulation, 2012, 125: e2–e220

    Article  Google Scholar 

  2. Nieponice A, Soletti L, Guan J, Deasy BM, Huard J, Wagner WR, Vorp DA. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 2008, 29: 825–833

    Article  CAS  Google Scholar 

  3. Saitow C, Kaplan DL, Castellot Jr JJ. Heparin stimulates elastogenesis: application to silk-based vascular grafts. Matrix biol, 2011, 30: 346–355

    Article  CAS  Google Scholar 

  4. Wang DA, Ji J, Sun YH, Yu GH, Feng LX. Blends of stearyl poly(ethylene oxide) coupling-polymer in chitosan as coating materials for polyurethane intravascular catheters. J Biomed Mater Res, 2001, 58: 372–383

    Article  CAS  Google Scholar 

  5. Wang DA, Ji J, Gao CY, Yu GH, Feng LX. Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications. Biomaterials, 2001, 22: 1549–1562

    Article  CAS  Google Scholar 

  6. Harris JR, Seikaly H. Evaluation of polytetrafluoroethylene micrografts in microvascular surgery. J Otolaryngol, 2002, 31: 89–92

    Article  Google Scholar 

  7. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater, 2005, 74: 570–581

    Article  CAS  Google Scholar 

  8. Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials, 2005, 26: 7457–7470

    Article  CAS  Google Scholar 

  9. Wang DA, Ji J, Feng LX. Surface analysis of poly(ether urethane) blending stearyl polycethylene oxide coupling polymer. Macromolecules, 2000, 33: 8472–8478

    Article  CAS  Google Scholar 

  10. Wang DA, Ji J, Feng LX. Various-sized stearyl poly(ethylene oxide) coupling-polymer blending poly(ether urethane) material for surface study and biomedical applications. Macromol Chem Phys, 2000, 201: 1574–1584

    Article  CAS  Google Scholar 

  11. Fields C, Cassano A, Allen C, Meyer A, Pawlowski KJ, Bowlin GL, Rittgers SE, Szycher M. Endothelial cell seeding of a 4-mm I.D. Polyurethane vascular graft. J Biomater Appl, 2002, 17: 45–70

    Article  Google Scholar 

  12. Lin HB, Sun W, Mosher DF, García-Echeverría C, Schaufelberger K, Lelkes PI, Cooper SL. Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. J Biomed Mater Res, 1994, 28: 329–342

    Article  CAS  Google Scholar 

  13. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM. Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res, 2005, 38: 879–884

    Article  CAS  Google Scholar 

  14. Ghanbari H, de Mel A, Seifalian AM. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int J Nanomedicine, 2011, 6: 775–786

    CAS  Google Scholar 

  15. Wang DA, Feng LX, Ji J, Sun YH, Zheng XX, Elisseeff JH. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. J Biomed Mater Res A, 2003, 65A: 498–510

    Article  CAS  Google Scholar 

  16. Wang DA. Engineering blood-contact biomaterials by “H-bond grafting” surface modification. Adv Polym Sci, 2007, 179–227

    Google Scholar 

  17. Widawski G, Rawiso M, François B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994, 369: 387–389

    Article  CAS  Google Scholar 

  18. François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Adv Mater, 1995, 7: 1041–1044

    Article  Google Scholar 

  19. Schuler M, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, Tosatti SG. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials, 2006, 27: 4003–4015

    Article  CAS  Google Scholar 

  20. Wang DA, Ji J, Sun YH, Shen JC, Feng LX, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules, 2002, 3: 1286–1295

    Article  CAS  Google Scholar 

  21. Martins MC, Wang D, Ji J, Feng L, Barbosa MA. Albumin and fibrinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly (hydroxyethylmethacrylate)) surfaces. J Biomater Sci Polym Ed, 2003, 14: 439–455

    Article  CAS  Google Scholar 

  22. Martins MC, Wang D, Ji J, Feng L, Barbosa MA. Albumin and fibrinogen adsorption on PU-PHEMA surfaces. Biomaterials, 2003, 24: 2067–2076

    Article  CAS  Google Scholar 

  23. Wang DA, Chen BL, Ji J, Feng LX. Selective adsorption of serum albumin on biomedical polyurethanes modified by a poly(ethylene oxide) coupling-polymer with Cibacron Blue (F3G-A) endgroups. Bioconjug Chem, 2002, 13: 792–803

    Article  CAS  Google Scholar 

  24. Wang DA, Ji J, Feng LX. Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified poly(ether urethane) surfaces. J Biomater Sci Polym Ed, 2001, 12: 1123–1146

    Article  CAS  Google Scholar 

  25. Lai Y, Xie C, Zhang Z, Lu W, Ding J. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials, 2010, 31: 4809–4817

    Article  CAS  Google Scholar 

  26. Zhu Y, Gao C, He T, Shen J. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials, 2004, 25: 423–430

    Article  CAS  Google Scholar 

  27. Liu W, Liu R, Li Y, Wang W, Ma L, Wu M, Huang Y. Self-organized ordered microporous thin films from grafting copolymers. Polymers, 2009, 50: 2716–2726

    Article  CAS  Google Scholar 

  28. Xiong XP, Lin MF, Zou WW. Honeycomb structured porous films prepared by the method of breath figure: history and development. Curr Org Chem, 2011, 15: 3706–3718

    Article  CAS  Google Scholar 

  29. Roohpour N, Wasikiewicz JM, Moshaverinia A, Paul D, Grahn MF, Rehman IU, Vadgama P. Polyurethane membranes modified with isopropyl myristate as a potential candidate for encapsulating electronic implants: a study of biocompatibility and water permeability. Polymers, 2010, 2: 102–119

    Article  CAS  Google Scholar 

  30. Yabu H, Shimomura M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem Mater, 2005, 17: 5231–5234

    Article  CAS  Google Scholar 

  31. Dong R, Ma H, Yan J, Fang Y, Hao J. Tunable morphology of 2D honeycomb-patterned films and the hydrophobicity of a ferrocenyl-based oligomer. Chem Eur J, 2011, 17: 7674–7684

    Article  CAS  Google Scholar 

  32. Li L, Zhong YW, Chen CK, Li J. A novel path to patterning based on the static breath figure technique. Acta Physico-Chimica Sinica, 2010, 26: 1135–1142

    Google Scholar 

  33. Qin S, Li H, Yuan WZ, Zhang Y. Fabrication of polymeric honeycomb microporous films: breath figures strategy and stabilization of water droplets by fluorinated diblock copolymer micelles. J Mater Sci, 2012, 47: 6862–6871

    Article  CAS  Google Scholar 

  34. Zhu Y, Sheng R, Luo T, Li H, Sun J, Chen S, Sun W, Cao A. Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers: surface morphology control and biomedical application as scaffolds for cell growth. ACS Appl Mater Interfaces, 2011, 3: 2487–2495

    Article  CAS  Google Scholar 

  35. François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Adv Mater, 1995, 7: 1041–1044

    Article  Google Scholar 

  36. Sharma V, Song LL, Jones RL, Barrow MS, Williams R, Srinivasarao M. Effect of solvent choice on breath-figure-templated assembly of “holey” polymer films. EPL, 2010, 91: 38001

    Article  CAS  Google Scholar 

  37. Ferrari E, Fabbri P, Pilati F. Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir, 2011, 27: 1874–1881

    Article  CAS  Google Scholar 

  38. Park MS, Joo W, Kim JK. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir, 2006, 22: 4594–4598

    Article  CAS  Google Scholar 

  39. Peng J, Han YC, Yang YM, Li BY. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45: 447–452

    Article  CAS  Google Scholar 

  40. Beysens D, Steyer A, Guenoun P, Fritter D, Knobler CM. How does dew form? Phase Transitions, 1991, 31: 219–246

    Article  CAS  Google Scholar 

  41. Xu Y, Zhu B. A study on formation of regular honeycomb pattern in polysulfone film. Polymer, 2005, 46: 713–717

    Article  CAS  Google Scholar 

  42. Lin DT, Young TH, Fang Y. Studies on the effect of surface properties on the biocompatibility of polyurethane membranes. Biomaterials, 2001, 22: 1521–1529

    Article  CAS  Google Scholar 

  43. Freij-Larsson C, Jannasch P, Wesslen B. Polyurethane surfaces modified by amphiphilic polymers: Effects on protein adsorption. Biomaterials, 2000, 21: 307–315

    Article  CAS  Google Scholar 

  44. De Wael K, Verstraete A, Van Vlierberghe S, Dejonghe W, Dubruel P, Adriaens A. The electrochemistry of a gelatin modified gold electrode. Int J Electrochem Sci, 2011, 6: 1810–1819

    Google Scholar 

  45. Ren ZY, Wu HP, Ma JM, Ma DZ. FTIR studies on the model polyurethane hard segments based on a new waterborne chain extender dimethylol butanoic acid (DMBA). Chin J Polym Sci, 2004, 22: 225–230

    CAS  Google Scholar 

  46. Lim HR, Baek HS, Lee MH, Woo YI, Han DW, Han MH, Baik HK, Choi WS, Park KD, Chung KH, Park JC. Surface modification for enhancing behaviors of vascular endothelial cells onto polyurethane films by microwave-induced argon plasma. Surf Coat Technol, 2008, 202: 5768–5772

    Article  CAS  Google Scholar 

  47. Guan J, Gao C, Feng L, Sheng J. Surface photo-grafting of polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelial cell adhesion and growth. J Biomater Sci Polym Ed, 2000, 11: 523–536

    Article  CAS  Google Scholar 

  48. Guan J, Gao C, Feng L, Shen J. Preparation of functional poly(ether-urethane) for immobilization of human living cells. 1. Surface graft polymerization of poly(ether-urethane) with 2-(dimethylamino)ethyl methacrylate and quaternization of grafted membrane. Eur Polym J, 2000, 36: 2707–2713

    Article  CAS  Google Scholar 

  49. Guan J, Gao C, Feng L, Shen J. Surface modification of polyurethane for promotion of cell adhesion and growth 1: Surface photo-grafting with N,N-dimethylaminoethyl methacrylate and cytocompatibility of the modified surface. J Mater Sci Mater Med, 2001, 12: 447–452

    Article  CAS  Google Scholar 

  50. Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ. Topographic guidance of endothelial cells on silicone surfaces with micro-to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res Part A, 2005, 75: 668–680

    Article  CAS  Google Scholar 

  51. Narayan D, Venkatraman SS. Effect of pore size and interpore distance on endothelial cell growth on polymers. J Biomed Mater Res Part A, 2008, 87: 710–718

    Article  CAS  Google Scholar 

  52. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater, 2009, 5: 670–679

    Article  CAS  Google Scholar 

  53. Amirkhani M, Berger N, Abdelmohsen M, Zocholl F, Gonçalves MR, Marti O. The effect of different stabilizers on the formation of self-assembled porous film via the breath-figure technique. J Polym Sci Part B: Polym Phys, 2011, 49: 1430–1436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LinXi Hou or DongAn Wang.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L., Peck, Y., Wang, X. et al. Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity. Sci. China Chem. 57, 596–604 (2014). https://doi.org/10.1007/s11426-013-4997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4997-3

Keywords

Navigation