Science China Chemistry

, Volume 57, Issue 3, pp 435–441 | Cite as

Theoretical investigation of substitution and end-group effects on poly(p-phenylene vinylene)s

Articles

Abstract

Semi-empirical AM1 and ZINDO/S, as well as density function theory (DFT) method B3LYP/6-31G(d) quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene vinylene) derivatives (PPVs) with 10 and 11 phenylene rings in the backbone. The calculations suggest that the assembly of alternate incorporation of CN and alkoxy substituted phenylene rings in the PPV backbone could be a good way to construct organic semiconductors with low HOMO/LUMO energy band-gaps. The effect of the end-group on the electronic structures and optical properties of the conjugated polymer was investigated by the calculated UV-Vis and UPS spectra. It was demonstrated that the aldehyde and phosphate end-groups have limited effects on the photophysical properties in the UV-visible range.

Keywords

theoretical investigation PPVs optoelectronic modification conjugated polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 (a).
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB. Electroluminescence in conjugated polymers. Nature, 1990: 347: 539–540CrossRefGoogle Scholar
  2. 1 (b).
    Heeger AJ. Semiconducting polymers: The Third Generation. Chem Soc Rev, 2010, 39(7): 2354–2371CrossRefGoogle Scholar
  3. 1 (c).
    Bian LY, Zhu EW, Tang J, Tang WH, Zhang FJ. Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Prog Polym Sci, 2012, 37: 1292–1331CrossRefGoogle Scholar
  4. 2 (a).
    Tekin E, Egbe DA, Kranenburg JM, Ulbricht C, Rathgeber S, Birckner E, Rehmann N, Meerholz K, Schubert US. Effect of side chain length variation on the optical properties of PPE-PPV hybrid polymers. Chem Mater, 2008, 20(8): 2727–2735CrossRefGoogle Scholar
  5. 1 (b).
    Mbarek M, Zaidi B, Alimi K. Theoretical study of the alkoxyls groups effect on PPV-ether excited states, a relationship with femtosecond decay. Spectrochim Acta Part A, 2012, 88: 23–30CrossRefGoogle Scholar
  6. 3 (a).
    Hubijar E, Papadimitratos A, Lee D, Zakhidov A, Ferraris JP. Synthesis and characterization of a novel symmetrical sulfonesubstituted polyphenylene vinylene (SO2EH-PPV) for applications in light emitting devices. J Phys Chem B, 2013, 117: 4442–4448CrossRefGoogle Scholar
  7. 3 (b).
    Yang SH, Wu CC, Lee CF, Liu MH. Synthesis and luminescence of red MEH-PPV:P3OT polymer. Displays, 2008, 29(3): 214–218Google Scholar
  8. 4 (a).
    Tinti F, Sabir FK, Gazzano M, Righi S, Ulbricht C, Usluer O, Pokorna V, Cimrova V, Yohannes T, Egbe D, Camaioni N. Tuning the properties of an anthracene-based PPE-PPV copolymer by fine variation of its macromolecular parameters. RSC Adv, 2013, 3: 6972–6980CrossRefGoogle Scholar
  9. 4 (b).
    Egbe DA, Tekin E, Birckner E, Pivirikas A, Sariciftci NS, Schubert US. Effect of styryl side groups on the photophysical properties and hole mobility of PPE-PPV systems. Macromolecules, 2007, 40: 7786–7794CrossRefGoogle Scholar
  10. 5 (a).
    Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107(4): 1324–1338CrossRefGoogle Scholar
  11. 5 (b).
    Belletete M, Morin JF, Leclerc M, Durocher G. A theoretical, spectroscopic, and photophysical study of 2,7-carbazolenevinylene-based conjugated derivatives. J Phys Chem A, 2005, 109, 6953-6959Google Scholar
  12. 6 (a).
    Xiao Y, Yu W L, Chen ZK, Lee NHS, Lai YH, Huang W. Synthesis and characterization of a novel light-emitting copolymer with improved charge-balancing property. Thin Solid Film, 2000, 363: 102–103CrossRefGoogle Scholar
  13. 6 (b).
    Bartha F, Howard IA, Geerlings P, Alsenoy CV, Vanderzande D, Cleij T J, Bogar F. Density functional crystal orbital study of cyano-substituted poly(para-phenylene-vinylene) and poly-(quinoxaline-vinylene). Int J Quantum Chem, 2006, 106: 1912–1923CrossRefGoogle Scholar
  14. 6 (c).
    Garcia JR, Peres LO, Fernandes MR, Gruber J, Nart FC. One-step electrochemical synthesis of pure poly(2,5-dicy-ano-p-phenylene-vinylene) films. J Solid State Electrochem, 2004, 8: 122–126CrossRefGoogle Scholar
  15. 7 (a).
    Zheng C, Tao Y, Cao JZ, Chen RF, Zhao P, Wu XJ, Huang W. The structural, electronic, and optical properties of ladder-type polyheterofluorenes: A theoretical study. J Mol Model, 2012, 18(11): 4929–4939CrossRefGoogle Scholar
  16. 7 (b).
    May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, Andrienko D. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J Am Chem Soc, 2012, 134: 13818–13822CrossRefGoogle Scholar
  17. 7 (c).
    Chang R, Hsu JH, Fann WS, Liang KK, Chang CH, Hayashi M, Yu J, Lin SH, Chang EC, Chuang K R, Chen SA. Experimental and theoretical investigations of absorption and emission spectra of the light-emitting polymer MEH-PPV in solution. Chem Phys Lett, 2000, 317: 142–152CrossRefGoogle Scholar
  18. 8 (a).
    Giro R, Caldas MJ, Galvao DS. Band gap engineering for poly(p-phenylene) and poly(p-phenylene vinylene) copolymers using the tight-binding approach. Int J Quantum Chem, 2005, 103(5): 588–596CrossRefGoogle Scholar
  19. 8 (b).
    Ivanovic N, Radisavljevic I, Marjanovic D, Bojanic S, Carreras C. Molecular size and conformational effects on oligophenylene’s electronic and vibrational properties, J Polym Sci Pol Phys, 2006, 44(13): 1783–1794CrossRefGoogle Scholar
  20. 8 (c).
    Chen RF, Ma C, Pan JF, Zheng C, Huang W. Theoretical study of the electronic ground states and low lying singlet excited states of thiophene-based spirofluorenes; Sci China Phys, Mechan & Astron. 2011, 54(5): 884–889Google Scholar
  21. 9.
    Cornil J, Dos SD, Beljonne D, Bredas JL. Electronic structure of phenylene vinylene oligomers: Influence of donor/acceptor substitutions. J Phys Chem, 1995, 99(15): 5604–5611CrossRefGoogle Scholar
  22. 10.
    Feng DD, Wang SF, Zhuang QX, Wu PP, Han ZW. Semi-empirical calculation and spectroscopic study of protonated poly(p-phenylene benzobisoxazole) models. Polymer, 2004, 45(26): 8871–8879CrossRefGoogle Scholar
  23. 11 (a).
    Zerner MC. Semiempirical molecular orbital methods. Reviews in Computational Chemistry, Volume 2, Chapter 8, 313–365. Lipkowitz KB, Boyd DB, Eds. VCH Publishers, Inc. 1991Google Scholar
  24. 11 (b).
    Hyperchem 4.5, 1995 Hypercube, Inc.Google Scholar
  25. 12.
    AMPAC Version 6.55, Semichem, Inc., PO Box 1649, Shawnee KS 66222Google Scholar
  26. 13 (a).
    Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem Rev, 1991, 91(5): 651–667CrossRefGoogle Scholar
  27. 13 (b).
    Meng S, Jiang J, Wang Y, Ma J. Modulation of electronic structures of thienylene vinylene oligomers by substituents and solvents: Ground and excited states. J Phys Org Chem, 2009, 22: 670–679CrossRefGoogle Scholar
  28. 13 (c).
    Chen RF, Zhu R, Zheng C, Fan QL, Huang W. Synthesis, characterization, and applications of vinylsilafluorene copolymers: New host materials for electroluminescent devices. Sci China Chem, 2011, 53(11): 2329–2336CrossRefGoogle Scholar
  29. 14 (a).
    Tiradorives J, Jorgensen WL. Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theo Comput, 2008, 4: 297–306CrossRefGoogle Scholar
  30. 14 (b).
    Yin J, Chen RF, Zhang SL, Li HH, Zhang GW, Feng XM, Ling QD, Huang W. Theoretical study of charge transfer properties of the π-stacked poly(1,1-silafluorene)s. J Phys Chem C, 2011, 115(30):14778–14785CrossRefGoogle Scholar
  31. 15.
    Ma J, Li SH, Jiang YS. A time-dependent DFT study on band gaps and effective conjugation lengths of polyacetylene, polyphenylene, polypentafulvene, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, and polythiophene. Macromolecules, 2002, 35(3): 1109–1115CrossRefGoogle Scholar
  32. 16.
    Cornil J, Beljonne D, Heller CM, Campbell IH, Laurich BK, Smith DL, Bradley DDC, Mullen K, Bredas JL. Photoluminescence spectra of oligo-paraphenyllenevinylenes: A joint theoretical and experimental characterization, Chem Phys Lett, 1997, 278:139–145CrossRefGoogle Scholar
  33. 17.
    Cornil J, Vanderdonckt S, Lazzaroni R, dos Santos DA, Thys G, Geise HJ, Yu LM, Szablewski M, Bloor D, Logdlund M, Salaneck WR, Gruhn NE, Lichtenberger DL, Lee PA, Armstrong NR, Bredas JL. Valence electronic structure of pi-conjugated materials: Simulation of the ultraviolet photoelectron spectra with semiempirical Hartree-Fock approaches. Chem Mater, 1999, 11: 2436CrossRefGoogle Scholar
  34. 18.
    Lhost O, Bredas JL, Graham SC, Friend RH, Bradley DDC. Theoretical study of the electronic structure of poly(2,5-dimethoxypara-phenyl-enevinylene) and its oligomers. Synth Met, 1993, 57(2-3): 4290–4295CrossRefGoogle Scholar
  35. 19.
    Fahlman M, Loegdlund M, Stafstroem S, Salaneck WR, Friend RH, Burn PL, Holmes AB, Kaeriyama K, Sonoda Y, Meyers F, Bredas JL. Experimental and theoretical studies of the electronic structure of poly(p-phenylenevinylene) and some ring-substituted derivatives. Macromolecules, 1995, 28(6): 1959–1965CrossRefGoogle Scholar
  36. 20.
    Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys, 1999, 110:6158–617CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics & Information Displays; Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Institute of Materials Research and EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations