Skip to main content
Log in

Fluorescence triggered by ligand-protein hydrophobic interaction

  • News & Comments
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrophobic fluorescence: Tan and his colleagues recently introduced a brand new chemotype of environment-sensitive fluorescent turn-on probes to detect the hydrophobic ligand-binding domain by using SBD fluorophore. The design strategy described in this report generalized the environment sensitivity turn-on mechanism to recognize a specific protein, which provides a robust breakthrough for interchanging fluorescence in conventional small-molecule fluorescent imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771): 217–224

    Article  CAS  Google Scholar 

  2. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev, 2010, 110(5): 2620–2640

    Article  CAS  Google Scholar 

  3. Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods, 2011, 8(8): 642–645

    Article  CAS  Google Scholar 

  4. Martin-Couce L, Martin-Fontecha M, Palomares O, Mestre L, Cordomi A, Hernangomez M, Palma S, Pardo L, Guaza C, Lopez-Rodriguez ML, Ortega-Gutierrez S. Chemical probes for the recognition of cannabinoid receptors in native systems. Angew Chem Int Ed, 2012, 51(28): 6896–6899

    Article  CAS  Google Scholar 

  5. Wu J, Liu W, Ge J, Zhang H, Wang P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev, 2011, 40(7): 3483–3495

    Article  CAS  Google Scholar 

  6. Baba R, Hori Y, Mizukami S, Kikuchi K. Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity. J Am Chem Soc, 2012, 134(35): 14310–14313

    Article  CAS  Google Scholar 

  7. Chan J, Dodani SC, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem, 2012, 4(12): 973–984

    Article  CAS  Google Scholar 

  8. Sun W, Li J, Li W, Su L, Du L, Li M. Design of off/on fluorescent thiol probes based on coumarin fluorophore. Sci China Chem, 2012, 55(9): 1776–1780

    Article  CAS  Google Scholar 

  9. Thurley S, Roglin L, Seitz O. Hairpin peptide beacon: Dual-labeled PNA-peptide-hybrids for protein detection. J Am Chem Soc, 2007, 129(42): 12693–12695

    Article  CAS  Google Scholar 

  10. Zhang S, Yang C, Lu W, Huang J, Zhu W, Li H, Xu Y, Qian X. A highly selective space-folded photo-induced electron transfer fluorescent probe for carbonic anhydrase isozymes ix and its applications for biological imaging. Chem Commun (Camb), 2011, 47(29): 8301–8303

    Article  CAS  Google Scholar 

  11. Sparano BA, Koide K. Fluorescent sensors for specific rna: A general paradigm using chemistry and combinatorial biology. J Am Chem Soc, 2007, 129(15): 4785–4794

    Article  CAS  Google Scholar 

  12. Lin L, Jiang Y. Photoinduced intramolecular charge transfer of sodium 4-(n,n-dimethylamino) benzenesulfonate. Sci China Ser B-Chem, 2000, 43(3): 295–305

    Article  CAS  Google Scholar 

  13. Takaoka Y, Ojida A, Hamachi I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew Chem Int Ed, 2013, 52(15): 4088–4106

    Article  CAS  Google Scholar 

  14. Wang C, Xie F, Suthiwangcharoen N, Sun J, Wang Q. Tuning the optical properties of bodipy dye through cu(I) catalyzed azide-alkyne cycloaddition (cuaac) reaction. Sci China Chem, 2012, 55(1): 125–130

    Article  Google Scholar 

  15. Mizusawa K, Ishida Y, Takaoka Y, Miyagawa M, Tsukiji S, Hamachi I. Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection. J Am Chem Soc, 2010, 132(21): 7291–7293

    Article  CAS  Google Scholar 

  16. Mizusawa K, Takaoka Y, Hamachi I. Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes. J Am Chem Soc, 2012, 134(32): 13386–13395

    Article  CAS  Google Scholar 

  17. Wang ZL, Ma K, Xu B, Li X, Tian WJ. A highly sensitive “turn-on” fluorescent probe for bovine serum albumin protein detection and quantification based on AIE-active distyrylanthracene derivative. Sci China Chem, 2013, 56(9): 1234–1238

    Article  CAS  Google Scholar 

  18. Li K, Ding D, Zhao Q, Sun J, Tang B, Liu B. Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging. Sci China Chem, 2013, 56(9): 1228–1233

    Article  CAS  Google Scholar 

  19. Vazquez ME, Blanco JB, Imperiali B. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J Am Chem Soc, 2005, 127(4): 1300–1306

    Article  CAS  Google Scholar 

  20. Loving G, Imperiali B. A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: A powerful tool for the study of dynamic protein interactions. J Am Chem Soc, 2008, 130(41): 13630–13638

    Article  CAS  Google Scholar 

  21. Loving G, Imperiali B. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: A highly sensitive toolset for the detection of biomolecular interactions. Bioconjug Chem, 2009, 20(11): 2133–2141

    Article  CAS  Google Scholar 

  22. Toutchkine A, Kraynov V, Hahn K. Solvent-sensitive dyes to report protein conformational changes in living cells. J Am Chem Soc, 2003, 125(14): 4132–4145

    Article  CAS  Google Scholar 

  23. Dunn AR, Hays AM, Goodin DB, Stout CD, Chiu R, Winkler JR, Gray HB. Fluorescent probes for cytochrome p450 structural characterization and inhibitor screening. J Am Chem Soc, 2002, 124(35): 10254–10255

    Article  CAS  Google Scholar 

  24. Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY. Probing protein electrostatics with a synthetic fluorescent amino acid. Science, 2002, 296(5573): 1700–1703

    Article  CAS  Google Scholar 

  25. Green AM, Marshall JS, Pensky J, Stanbury JB. Thyroxine-binding globulin: Characterization of the binding site with a fluorescent dye as a probe. Science, 1972, 175(4028): 1378–1380

    Article  CAS  Google Scholar 

  26. Koivunen JT, Nissinen L, Kapyla J, Jokinen J, Pihlavisto M, Marjamaki A, Heino J, Huuskonen J, Pentikainen OT. Fluorescent small molecule probe to modulate and explore α2β1 integrin function. J Am Chem Soc, 2011, 133(37): 14558–14561

    Article  CAS  Google Scholar 

  27. Kilpin KJ, Clavel CM, Edafe F, Dyson PJ. Naphthalimide-tagged ruthenium-arene anticancer complexes: Combining coordination with intercalation. Organometallics, 2012, 31(20): 7031–7039

    Article  CAS  Google Scholar 

  28. Zhuang YD, Chiang PY, Wang CW, Tan KT. Environment-sensitive fluorescent turn-on probes targeting hydrophobic ligand-binding domains for selective protein detection. Angew Chem Int Ed, 2013, 52(31): 8124–8128

    Article  CAS  Google Scholar 

  29. Turner DC, Brand L. Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates. Biochemistry, 1968, 7(10): 3381–3390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinYong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Du, L. & Li, M. Fluorescence triggered by ligand-protein hydrophobic interaction. Sci. China Chem. 56, 1667–1670 (2013). https://doi.org/10.1007/s11426-013-4993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4993-7

Keywords

Navigation