Skip to main content
Log in

Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tl(I) in water even at a trace level is fatal to human beings and the ecosystem. Here we fabricated a new polymer-supported nanocomposite (HMO-001) for efficient Tl(I) removal by encapsulating nanosized hydrous manganese dioxide (HMO) within a polystyrene cation exchanger (D-001). The resultant HMO-001 exhibited more preferable removal of Tl(I) than D-001 and IRC-748, an iminodiacetic chelating polymer, particularly in the presence of competing Ca(II) ions at greater levels in solution. Such preference was ascribed to the Donnan membrane effect caused by D-001 as well as the specific interaction between Tl(I) and HMO. The adsorbed Tl(I) was partially oxidized into insoluble Tl(III) by HMO at acidic pH, while negligible oxidation was observed at circumneutral pH. The exhausted HMO-001 was amenable to efficient regeneration by binary NaOH-NaClO solution for at least 10-cycle batch runs without any significant capacity loss. Fixed-bed column test of Tl(I)-contained industrial effluent and natural water further validated that Tl(I) retention on HMO-001 resulted in a conspicuous concentration drop from 1.3 mg/L to a value lower than 0.14 mg/L (maximum concentration level for industrial effluent regulated by US EPA) and from 1–4 μg/L to a value lower than 0.1 μg/L (drinking water standard regulated by China Health Ministry), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delvalls TA, Saenz V, Arias AM, Blasco J. Thallium in the marine environment: First ecotoxicological assessments in the Guadalquivir estuary and its potential adverse effect on the Donana European natural reserve after the Aznalcollar mining spill. Ciencias Marinas, 1999 25: 161–175

    CAS  Google Scholar 

  2. Kazantzis G. Thallium in the environment and health effects. Environ Geochem Health, 2000, 22: 275–280

    Article  CAS  Google Scholar 

  3. Peter ALJ, Viraraghavan T. Thallium: A review of public health and environmental concerns. Environ Int, 2005, 31: 493–501

    Article  CAS  Google Scholar 

  4. Casiot C, Egal M, Bruneel O, Verma N, Parmentier M, Elbaz-Poulichet F. Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoules mine (Southern France). Environ Sci Technol, 2011, 45: 2056–2064

    Article  CAS  Google Scholar 

  5. Xiong YL. The aqueous geochemistry of thallium: Speciation and solubility of thallium in low temperature systems. Environ Chem, 2009, 6: 441–451

    Article  CAS  Google Scholar 

  6. Zitko V. Toxicity and pollution potential of thallium. Sci Total Environ, 1975, 4: 185–192

    Article  CAS  Google Scholar 

  7. Seiler HG, Sigel H, Sigel A. Handbook on Toxicity of Inorganic Compounds. New York: Marcel Dekker Inc., 1989

    Google Scholar 

  8. Cheam V. Thallium contamination of water in Canada. Water Qual Res J Can, 2001, 36: 851–878

    CAS  Google Scholar 

  9. Kazantzis G. Thallium Handbook on the Toxicology of Metals. Amersterdam: Elsevier Science, 1986. 549–567

    Google Scholar 

  10. Leonard A, Gerber GB. Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutat Res-Rev Mutat, 1997, 387: 47–53

    Article  Google Scholar 

  11. Zhang Z, Zhang BG, Long JP, Zhang XM, Chen GL. Thallium pollution associated with mining of thallium deposits. Sci China, Ser D, 1998, 41: 75–81

    Article  CAS  Google Scholar 

  12. US EPA (Environmental Protection Agency). Technical factsheet on: Thallium. http://www.epa.gov/safewater/dwh/t-ioc/thallium.html, 2002

    Google Scholar 

  13. China MH (Ministry of Health). Standard for drinking water quality. GB 5749-2006, 2006

    Google Scholar 

  14. Xiao TF, Boyle D, Guha J, Rouleau A, Hong YT, Zheng BS. Groundwater-related thallium transfer processes and their impacts on the ecosystem: Southwest Guizhou Province, China. Appl Geochem, 2003, 18: 675–691

    Article  CAS  Google Scholar 

  15. Zhang L, Huang T, Zhang M, Guo XJ, Yuan Z. Studies on the capability and behavior of adsorption of thallium on nano-Al2O3. J Hazard Mater, 2008, 157: 352–357

    Article  CAS  Google Scholar 

  16. Senol ZM, Ulusoy U. Thallium adsorption onto polyacryamide-aluminosilicate composites: A Tl isotope tracer study. Chem Eng J, 2010, 162: 97–162

    Article  CAS  Google Scholar 

  17. Yantasee W, Warner C, Sangvanich T, Addleman RS, Carter TM, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol, 2007, 41: 5114–5119

    Article  CAS  Google Scholar 

  18. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater, 2010, 182: 225–231

    Article  CAS  Google Scholar 

  19. Cumbal L, SenGupta AK. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect. Environ Sci Technol, 2005, 39: 6508–6515

    Article  CAS  Google Scholar 

  20. Pan BJ, Wu J, Pan BC, Lv L, Zhang WM, Xiao LL, Wang XS, Tao XS, Zheng SR. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res, 2009, 43: 4421–4429

    Article  CAS  Google Scholar 

  21. Sarkar S, SenGupta AK. The Donnan membrane principle: Opportunities for sustainable engineered processes and materials. Environ Sci Technol, 2010, 44: 1161–1166

    Article  CAS  Google Scholar 

  22. Zhao X, Lv L, Pan BC, Zhang WM. Polymer-supported nanocomposites for environmental application: A review. Chem Eng J, 2011, 170: 381–394

    Article  CAS  Google Scholar 

  23. Zhang QR, Pan BC, Zhang WM, Pan BJ, Jia K, Zhang QX. Selective sorption of lead, cadmium, and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. Environ Sci Technol, 2008, 42: 4140–4145

    Article  CAS  Google Scholar 

  24. Parida KM, Kanungo SB, Sant BR. Studies on MnO2. 1. Chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. Electrochimica Acta, 1981, 26: 435–443

    Article  CAS  Google Scholar 

  25. Pan BC, Su Q, Zhang WM, Zhang QX, Ren HQ, Zhang QR. A process to prepare a hybrid sorbent by impregnating hydrous manganese dioxide (HMO) nanoparticles within polymer for enhanced removal of heavy metals. Chinese Patent, 200710134050.9, 2007

    Google Scholar 

  26. Lowry GV, Johnson KM. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol, 2004, 38: 5208–5216

    Article  CAS  Google Scholar 

  27. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL. Low-field magnetic separation of monodisperse Fe3O4 nanoparticles. Science, 2006, 314: 964–967

    Article  Google Scholar 

  28. Lafferty BJ, Ginder-Vogel M, Zhu MQ, Livi KJT, Sparks DL. Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environ Sci Technol, 2010, 44: 8467–8472

    Article  CAS  Google Scholar 

  29. Misono M, Ochiai E, Saito Y, Yoneda Y. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. J Inorg Nucl Chem, 1967, 29: 2685–2691

    Article  CAS  Google Scholar 

  30. Dahal MP, Lawrance GA. Adsorption of thallium(I), lead(II), copper( II), bismuth(III) and chromium(III) by electrolytic manganese dioxide. Adsorp Sci Technol, 1996, 13: 231–240

    CAS  Google Scholar 

  31. Xu Y, Boonfueng T, Axe L, Maeng S, Tyson T. Surface complexation of Pb(II) on amorphous iron oxide and manganese oxide: Spectroscopic and time studies. J Colloid Interface Sci, 2006, 299: 28–40

    Article  CAS  Google Scholar 

  32. Bidoglio G, Gibson PN, Ogorman M, Roberts KJ. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochim Cosmochim Acta, 1993, 57: 2389–2394

    Article  CAS  Google Scholar 

  33. Lin KD, Liu WP, Gan J. Oxidative removal of bisphenol A by manganese dioxide: Efficacy, products, and pathways. Environ Sci Technol, 2009, 43: 3860–3864

    Article  CAS  Google Scholar 

  34. Stumm W, Morgan JJ. Aquatic Chemistry. 3rd Ed. New York: Wiley, 1996

    Google Scholar 

  35. Dogan M, Abak H, Alkan M. Adsorption of methylene blue onto hazelnut shell: Kinetics mechanism and activation parameters. J Hazard Mater, 2009, 164: 172–181

    Article  CAS  Google Scholar 

  36. Pan BC, Zhang QR, Zhang WM, Pan BJ, Du W, Lv L, Zhang QJ, Xu ZW, Zhang QX. Highly effective removal of heavy metals by polymer-based zirconium phosphate. A case study of lead ion. J Colloid Interface Sci, 2007, 310: 99–105

    Article  CAS  Google Scholar 

  37. Pan BC, Zhang QX, Meng FW, Li XT, Zhang X, Zheng JZ, Zhang WM, Pan BJ, Chen JL. Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer. Environ Sci Technol, 2005, 39: 3308–3313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingCai Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, B., Wan, S., Zhang, S. et al. Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. Sci. China Chem. 57, 763–771 (2014). https://doi.org/10.1007/s11426-013-4992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4992-8

Keywords

Navigation