Skip to main content
Log in

Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We investigated the interfacial electrochemical processes on graphite anode of lithium ion battery by using highly oriented pyrolytic graphite (HOPG) as a model system. In situ electrochemical atomic force microscopy experiments were performed in 1 M lithium bis(trifluoromethanesulfonyl)imide/ethylene carbonate/diethyl carbonate to reveal the formation process of solid electrolyte interphase (SEI) on HOPG basal plane during potential variation. At 1.45 V, the initial deposition of SEI began at the defects of HOPG surface. After that, direct solvent decomposition took place at about 1.3 V, and the whole surface was covered with SEI. The thickness of SEI was 10.4 ± 0.2 nm after one cycle, and increased to 13.8 ± 0.2 nm in the second cycle, which is due to the insufficient electron blocking ability of the surface film. The Young’s modulus of SEI was measured by a peak force quantitative nanomechanical mapping (QNM). The Young’s modulus of SEI is inhomogeneous. The statistic value is 45 ± 22 MPa, which is in agreement with the organic property of SEI on basal plane of HOPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

    Article  CAS  Google Scholar 

  3. Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593–4607

    Article  Google Scholar 

  4. Peled E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems-The solid electrolyte interphase model. J Electrochem Soc, 1979, 126: 2047–2051

    Article  CAS  Google Scholar 

  5. Verma P, Maire P, Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 2010, 55: 6332–6341

    Article  CAS  Google Scholar 

  6. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104: 4303–4417

    Article  CAS  Google Scholar 

  7. Bhattacharya S, Alpas AT. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells. Carbon, 2012, 50: 5359–5371

    Article  CAS  Google Scholar 

  8. Wang F, Graetz J, Moreno MS, Ma C, Wu L, Volkov V, Zhu Y. Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano, 2011, 5: 1190–1197

    Article  CAS  Google Scholar 

  9. Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C, 2013, 117: 1257–1267

    Article  CAS  Google Scholar 

  10. Eshkenazi V, Peled E, Burstein L, Golodnitsky D. XPS analysis of the sei formed on carbonaceous materials. Solid State Ion, 2004, 170: 83–91

    Article  CAS  Google Scholar 

  11. Wagner MR, Albering JH, Moeller KC, Besenhard JO, Winter M. Xrd evidence for the electrochemical formation of in pc-based electrolytes. Electrochem Commun, 2005, 7: 947–952

    Article  CAS  Google Scholar 

  12. Chattopadhyay S, Lipson AL, Karmel HJ, Emery JD, Fister TT, Fenter PA, Hersam MC, Bedzyk MJ. In situ X-ray study of the solid electrolyte interphase (sei) formation on graphene as a model Li-ion battery anode. Chem Mater, 2012, 24: 3038–3043

    Article  CAS  Google Scholar 

  13. Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D. Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J Power Sources, 2007, 174: 462–468

    Article  Google Scholar 

  14. Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. A ftir and raman study of spontaneous reactions occurring at the LiNiyCo(l−y)O2 electrode/non-aqueous electrolyte interface. J Power Sources, 2001, 94: 183–188

    Article  CAS  Google Scholar 

  15. Santner HJ, Korepp C, Winter M, Besenhard JO, Möller KC. In-situ ftir investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Anal Bioanal Chem, 2004, 379: 266–271

    Article  CAS  Google Scholar 

  16. Schmitz R, Ansgar Müller R, Wilhelm Schmitz R, Schreiner C, Kunze M, Lex-Balducci A, Passerini S, Winter M. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J Power Sources, 2013, 233: 110–114

    Article  CAS  Google Scholar 

  17. Li JT, Fang JC, Su H, Sun SG. Interfacial processes of lithium ion batteries by FTIR spectroscopy. Prog Chem, 2011, 23: 349–356

    CAS  Google Scholar 

  18. Inaba M, Siroma Z, Funabiki A, Ogumi Z, Abe T, Mizutani Y, Asano M. Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution. Langmuir, 1996, 12: 1535–1540

    Article  CAS  Google Scholar 

  19. Inaba M, Siroma Z, Kawatate Y, Funabiki A, Ogumi Z. Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. J Power Sources, 1997, 68: 221–226

    Article  CAS  Google Scholar 

  20. Wang L, Deng X, Dai PX, Guo YG, Wang D, Wan LJ. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: An in situ ECSTM investigation. Phys Chem Chem Phys, 2012, 14: 7330–7336

    Article  CAS  Google Scholar 

  21. Jeong SK, Inaba M, Abe T, Ogumi Z. Surface film formation on graphite negative electrode in lithium-ion batteries: AFM study in an ethylene carbonate-based solution. J Electrochem Soc, 2001, 148: A989–A993

    Article  CAS  Google Scholar 

  22. Aurbach D, Koltypin M, Teller H. In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion. Langmuir, 2002, 18: 9000–9009

    Article  CAS  Google Scholar 

  23. Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries. J Power Sources, 2003, 119-121: 555–560

    Article  CAS  Google Scholar 

  24. Samorí P. Scanning Probe Microscopies Beyond Imaging. Weinheim: Wiley, 2006

    Book  Google Scholar 

  25. Alliata D, Kotz R, Novak P, Siegenthaler H. Electrochemical spm investigation of the solid electrolyte interphase film formed on hopg electrodes. Electrochem Commun, 2000, 2: 436–440

    Article  CAS  Google Scholar 

  26. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim HJ. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim Acta, 2004, 50: 247–254

    Article  CAS  Google Scholar 

  27. Alsteens D, Dupres V, Yunus S, Latgé JP, Heinisch JJ, Dufréne YF. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir, 2012, 28: 16738–16744

    Article  CAS  Google Scholar 

  28. Zhao L, Watanabe I, Doi T, Okada S, Yamaki J-i. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. J Power Sources, 2006, 161: 1275–1280

    Article  CAS  Google Scholar 

  29. Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, Doi T, Abe T, Ogumi Z. In situ AFM study of surface film formation on the edge plane of hopg for lithium-ion batteries. J Phys Chem C, 2011, 115: 25484–25489

    Article  CAS  Google Scholar 

  30. Xie XN, Chung HJ, Sow CH, Wee ATS. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater Sci Eng R, 2006, 54: 1–48

    Article  Google Scholar 

  31. Jeong SK, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z. Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir, 2001, 17: 8281–8286

    Article  CAS  Google Scholar 

  32. Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z. Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim Acta, 2002, 47: 1975–1982

    Article  CAS  Google Scholar 

  33. Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of hacat keratinocytes, a peak force tapping study on living cells. J Struct Biol, 2012, 178: 1–7

    Article  CAS  Google Scholar 

  34. Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci, 1975, 53: 314–326

    Article  CAS  Google Scholar 

  35. Yan J, Xia BJ, Su YC, Zhou XZ, Zhang J, Zhang XG. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim Acta, 2008, 53: 7069–7078

    Article  CAS  Google Scholar 

  36. Novák P, Joho F, Lanz M, Rykart B, Panitz JC, Alliata D, Kötz R, Haas O. The complex electrochemistry of graphite electrodes in lithiumion batteries. J Power Sources, 2001, 97-98: 39–46

    Article  Google Scholar 

  37. Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L. Direct observation of inhomogeneous solid electrolyte interphase on mno anode with atomic force microscopy and spectroscopy. Nano Lett, 2012, 12: 2153–2157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or LiJun Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Liu, X., Yan, H. et al. Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation. Sci. China Chem. 57, 178–183 (2014). https://doi.org/10.1007/s11426-013-4988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4988-4

Keywords

Navigation