Skip to main content
Log in

The synthesis of benzoxaboroles and their applications in medicinal chemistry

  • Reviews
  • Special Topic Chemistry for Life Sciences
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Benzoxaborole, as a versatile scaffold, plays important roles in organic synthesis, molecular recognition and supramolecular chemistry. It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties. Recently, benzoxaboroles were widely applied as antifungal, antibacterial, antiviral, anti-parasite, and anti-inflammatory agents. This review covers the properties, synthetic methods and applications of benzoxaboroles in medicinal chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker SJ, Tomsho JW, Benkovic SJ. Boron-containing inhibitors of synthetases. Chem Soc Rev, 2011, 40:4279–4285

    Article  CAS  Google Scholar 

  2. Torssell K. Arylboronic acids. III. Bromination of tolylboronic acids according to Wohl-Ziegler. Ark Kemi, 1957, 10:507–511

    CAS  Google Scholar 

  3. Adamczyk-Woźniak A, Cyrański MK, Żubrowska A, Sporzyński A. Benzoxaboroles—Old compounds with new applications. J Organomet Chem, 2009, 694:3533–3541

    Article  Google Scholar 

  4. Baker SJ, Zhang YK, Akama T, Lau A, Zhou HC, Hernandez V, Mao WM, Alley MRK, Sanders V, Plattner JJ. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of Onychomycosis. J Med Chem, 2006, 49:4447–4450

    Article  CAS  Google Scholar 

  5. Rock FL, Mao WM, Yaremchuk A, Tukalo M, Crepin T, Zhou HC, Zhang YK, Hernandez V, Akama T, Baker SJ. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science, 2007, 316:1759–1761

    Article  CAS  Google Scholar 

  6. Xia Y, Cao K, Zhou Y, Alley MRK, Rock F, Mohan M, Meewana M, Baker SJ, Lux S, Ding CZ, Jia GF, Kullyb M, Plattner JJ. Synthesis and SAR of novel benzoxaboroles as a new class of β-lactamase inhibitors. Bioorg Med Chem Lett, 2011, 21:2533–2536

    Article  CAS  Google Scholar 

  7. Li XF, Zhang SM, Zhang YK, Liu YD, Charles Z, Zhou Y, Plattner JJ, Baker SJ, Bu W, Liu L, Kazmierski WM, Duan MS, Grimes RM, Wright LL, Smith GK, Jarvest RL, Ji JJ, Cooper JP, Tallant MD, Crosby RM, Creech K, Ni ZJ, Zou WX, Wright J. Synthesis and SAR of acyclic HCV NS3 protease inhibitors with novel P4-benzoxaborole moieties. Bioorg Med Chem Lett, 2011, 21:2048–2054

    Article  CAS  Google Scholar 

  8. Qiao ZT, Wang Q, Zhang FL, Wang ZL, Bowling T, Nare B, Jacobs RT, Zhang J, Ding DZ, Liu YG, Zhou HC. Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem, 2012, 55:3553–3557

    Article  CAS  Google Scholar 

  9. Akama T, Baker SJ, Zhang YK, Hernandez V, Zhou HC, Sanders V, Freund Y, Kimura R, Maples KR, Plattner JJ. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis. Bioorg Med Chem Lett, 2009, 19:2129–2132

    Article  CAS  Google Scholar 

  10. Ciaravino V, Plattner J, Chanda S. An assessment of the genetic toxicology of novel boron-containing therapeutic agents. Environ Mol Mutagen, 2013, 54:338–346

    Article  CAS  Google Scholar 

  11. Adamczyk-Woźniak A, Cyrański MK, Jakubczyk M, Klimentowska P, Koll A, KoŁodziejczak J, Pojmaj G, Żubrowska A, Żukowska GZ, Sporzyński A. Influence of the substituents on the structure and properties of benzoxaboroles. J Phys Chem, 2010, 114:324–2330

    Article  Google Scholar 

  12. Jezierska A, Panek JJ, Zukowska GZ, Sporzynski AA. A combined experimental and theoretical study of benzoxaborole derivatives by Raman and IR spectroscopy, static DFT, and first-principle molecular dynamics. J Phys Org Chem, 2010, 3:451–460

    Google Scholar 

  13. Snyder HR, Reedy AJ, Lennarz WJ. Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc, 1958, 80:835–838

    Article  CAS  Google Scholar 

  14. John W. Tomsho JW, Pal A, Hall DG, Benkovic SJ. Ring structure and aromatic substituent effects on the pK a of the benzoxaborole pharmacophore. ACS Med Chem Lett, 2012, 3:48–52

    Article  Google Scholar 

  15. Zhang YK, Plattner JJ, Yvonne R. Freund, Easom EE, Zhou Y, Gut J, Rosenthal PJ, Waterson D, Gamo F, Angulo-Barturen I, Ge M, Li ZY, Li LC, Jian Y, Cui H, Wang HL, Yang J. Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents. Bioorg Med Chem Lett, 2011, 21:644–651

    Article  CAS  Google Scholar 

  16. Akama T, Virtucio C, Dong C, Kimura R, Zhang YK, Nieman JA, Sharma R, Lu XS, Sales M, Singh R. Structure-activity relationships of 6-(aminomethylphenoxy)-benzoxaborole derivatives as anti-inflammatory agent. Bioorg Med Chem Lett, 2013, 23:1680–1683

    Article  CAS  Google Scholar 

  17. Ding DZ, Meng QQ, Gao GW, Zhao YX, Wang Q, Nare B, Jacobs R, Rock F, Alley MRK, Plattner JJ, Chen GQ, Li DW, Zhou HC. Design, synthesis, and structure-activity relationship of trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents. J Med Chem, 2011, 54:1276–1287

    Article  CAS  Google Scholar 

  18. Baker SJ, Zhang YK, Akama T, Wheeler C, Plattner JJ, Rosser RM, Reid RP, Nixon NS. Synthesis of isotopically labelled (3-14C)- and (3, 3-2H2)-5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), a new antifungal agent for the potential treatment of onychomycosis. J Labelled Compd Radiopharm, 2007, 50:245–250

    Article  CAS  Google Scholar 

  19. Ding DZ, Zhao YX, Meng QQ, Xie DS, Nare B, Chen DT, Bacchi CJ, Yarlett N, Zhang YK, Hernandez V. Discovery of novel benzoxaborole-based potent antitrypanosomal Agents. ACS Med Chem Lett, 2010, 1:165–169

    Article  CAS  Google Scholar 

  20. Zhang YK, Plattner JJ, Easom EE, Waterson D, Ge M, Li ZY, Li LC, Jian Y. An efficient synthesis for a new class antimalarial agent, 7-(2-carboxyethyl)-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole. Tetrahedron Lett, 2011, 52:3909–3911

    Article  CAS  Google Scholar 

  21. Li XF, Plattner JJ, Hernandez V, Ding CZ, Wu W, Yang Y, Xu MS. Synthesis of novel benzoxaborole-containing phenylalanine analogues. Tetrahedron Lett, 2011, 52:4924–4926

    Article  CAS  Google Scholar 

  22. Zhang YK, Plattner JJ, Freund YR, Easom EE, Zhou Y, Ye L, Zhou HC, Waterson D, Gamo F, Sanz LM, Ge M, Li ZY, Li LC, Wang HL, Cui H. Benzoxaborole antimalarial agents. Part 2: Discovery of fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzo-xaboroles. Bioorg Med Chem Lett, 2012, 22:1299–1307

    Article  CAS  Google Scholar 

  23. Zhang YK, Plattner JJ, Akama T, Baker SJ, Hernandez VS, Sanders V, Freund YR, Kimura R, Bu W, Hold KM, Lu XS. Design and synthesis of boron-containing PDE4 inhibitors using soft-drug strategy for potential dermatologic anti-inflammatory application. Bioorg Med Chem Lett, 2010, 20:2270–2274

    Article  CAS  Google Scholar 

  24. Murata M, Oyama T, Watanabe S, Masuda Y. Palladium-catalyzed borylation of aryl halides or triflates with dialkoxyborane: A novel and facile synthetic route to arylboronates. J Org Chem, 2000, 65:164–168

    Article  CAS  Google Scholar 

  25. Murata M, Watanabe S, Masuda Y. Novel palladium (0)-catalyzed coupling reaction of dialkoxyborane with aryl halides: Convenient synthetic route to arylboronates. J Org Chem, 1997, 62:6458–6459

    Article  CAS  Google Scholar 

  26. Ishiyama T, Murata M, Miyaura N. Palladium (0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: A direct procedure for arylboronic esters. J Org Chem, 1995, 60:7508–7510

    Article  CAS  Google Scholar 

  27. Yamamoto Y, Ishii J, Nishiyama H, Itoh K. One-pot sequential four-component coupling via Cp*RuCl-catalyzed cyclotrimerization and Suzuki-Miyaura coupling. Tetrahedron, 2005, 61:11501–11510

    Article  CAS  Google Scholar 

  28. Yamamoto Y, Ishii J, Nishiyama H, Itoh K. Cp*RuCl-catalyzed formal intermolecular cyclotrimerization of three unsymmetrical alkynes through a boron temporary tether: Regioselective four-component coupling synthesis of phthalides. J Am Chem Soc, 2005, 127:9625–9631

    Article  CAS  Google Scholar 

  29. Grassberger M. Zum Abbau von 1,2-dihydro-l-hydroxy-2-organo-sulfonyl-2,3,1-benzodiazaborinen und -thieno[3,2-d][1,2,3]diazaborinen in alkalischer wäBriger Lösung. Liebigs Ann Chem, 1985:683–688

    Google Scholar 

  30. Lennarz WJ, Snyder HR. Arylboronic acids. IV. reactions of borono-phthalide. J Am Chem Soc, 1960, 82:2172–2175

    Article  CAS  Google Scholar 

  31. Bowers GD, Tenero D, Patel P, Huynh P, Sigafoos J, O’Mara K, Young GC, Dumont E, Cunningham E, Kurtinecz M, Stump P, Conde JJ, Chism JP, Reese MJ, Yueh YL, Tomayko JF. Disposition and metabolism of GSK2251052 in humans: A novel boron-containing antibiotic. Drug Metab Dispos, 2013, 41:1070–1081

    Article  CAS  Google Scholar 

  32. Ding CZ, Zhang YK, Li XF, Liu Y, Zhang SM, Zhou YS, Plattner JJ, Baker SJ, Liu LA, Duan MS, Jarvest RL, Ji JJ, Kazmierski WM, Tallant MD, Wright LL, Smith GK, Crosby RM, Wang AA, Ni ZJ, Zou WX, Wright J. Synthesis and biological evaluations of P4-benzoxaborole-substituted macrocyclic inhibitors of HCV NS3 protease. Bioorg Med Chem Lett, 2010, 20:7317–7322

    Article  CAS  Google Scholar 

  33. Haynes RR, Snyder HR. Arylboronic acids. VIII. Reactions of boronophthalide. J Org Chem, 1964, 29:3229–3233

    Article  CAS  Google Scholar 

  34. Robin B, Buell G, Kiprof P, Nemykin VN. 3H-2,1-Benzoxaborole-1-spiro-4′-(5-oxa-3a-aza-4-borapyrene). Acta Cryst, 2008, 64:o314–o315

    CAS  Google Scholar 

  35. Adamczyk-Wozniak A, Madura I, Velders AH, Sporzynski A. Diverse reactivity of 2-formylphenylboronic acid with secondary amines: synthesis of 3-amino-substituted benzoxaboroles. Tetrahedron Lett, 2010, 51:6181–6185

    Article  CAS  Google Scholar 

  36. Zhdankin VV, Persichini PJ, Zhang L, Fix S, Kiprof P. Synthesis and structure of benzoboroxoles: Novel organoboron heterocycles. Tetrahedron Lett, 1999, 40:6705–6708

    Article  CAS  Google Scholar 

  37. Tschampel P, Snyder HR. Arylboronic acids. VII. Some reactions of o-formylbenzeneboronic acid. J Org Chem, 1964, 29:2168–2172

    Article  CAS  Google Scholar 

  38. Sporzynski A, Lewandowski M, Rogowska P, Cyranski MK. 1,3-Dihydro-1-hydroxy-3-morpholin-4-yl-2,1-benzoxaborole: Product of the reaction of o-formylphenylboronic acid with morpholine. Appl Organometal Chem, 2005, 19:1202–1203

    Article  CAS  Google Scholar 

  39. Dąbrowski M, Kurach P, Luliński S, Serwatowski J. Anortho-lithiated derivative of protected phenylboronic acid: An approach to ortho-functionalized arylboronic acids and 1,3-dihydro-1-hydroxybenzo [c][2,1]oxaboroles. Appl Organometal Chem, 2007, 21:234–238

    Article  Google Scholar 

  40. Nicolaou KC, Natarajan S, Li H, Jain NF, Hughes R, Solomon ME, Ramanjulu JM, Boddy CNC, Takayanagi M. Total synthesis of vancomycin aglycon-part 1: Synthesis of amino acids 4–7 and construction of the AB-COD ring skeleton. Angew Chem Int Ed, 1998, 37:2708–2714

    Article  CAS  Google Scholar 

  41. Hui XY, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, Hold KM, Akama T, Zhang YK, Plattner JJ. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci, 2007, 96:2622–2631

    Article  CAS  Google Scholar 

  42. Gupta AK, Simpson FC. New therapeutic options for onychomycosis. Expert Opin Pharmacother, 2012, 13:1131–1142

    Article  CAS  Google Scholar 

  43. Livermore DM. β-Lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother, 1998, 41:25–41

    Article  CAS  Google Scholar 

  44. Zoulim F, Chevallier M, Maynard M, Trepo C. Clinical consequences of hepatitis C virus infection. Rev Med Virol, 2003, 13:57–68

    Article  CAS  Google Scholar 

  45. Fried MW. Side effects of terapy of Hepatitis C and their management. Hepatology, 2002, 36:S237

    Article  Google Scholar 

  46. Reiser M, Timm J. Serine protease inhibitors as anti-hepatitis C virus agents. Expert Rev Anti Infect Ther, 2009, 7:537–547

    Article  CAS  Google Scholar 

  47. Li XF, Zhang YK, Liu Y, Zhang SM, Ding CZ, Zhou Y, Plattner JJ, Baker SJ, Liu L, Bu W, Kazmierski WM, Wright LL, Smith GK, Jarvest RL, Duan MS, Ji JJ, Cooper JP, Tallant MD, Crosby RM, Creech K, Ni ZJ, Zou WX, Wright J. Synthesis of new acylsulfamoyl benzoxaboroles as potent inhibitors of HCV NS3 protease. Bioorg Med Chem Lett, 2010, 20:7493–7497

    Article  CAS  Google Scholar 

  48. Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Brit Med Bull, 2012, 104:175–196

    Article  CAS  Google Scholar 

  49. Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals. Curr Opin Infect Dis, 2011, 24:586–592

    Article  CAS  Google Scholar 

  50. Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP. Development of novel drugs for human African trypanosomiasis. Future Microbiol, 2011, 6:677–691

    Article  CAS  Google Scholar 

  51. Jacobs RT, Plattner JJ, Nare B, Wring SA, Chen DT, Freund Y, Gaukel EG, Orr MD, Perales JB, Jenks M, Noe RA, Sligar JM, Zhang YK, Bacchi CJ, Yarlett N, Don R. Benzoxaboroles: A new class of potential drugs for human African trypanosomiasis. Future Med Chem, 2011, 3:1259–1278

    Article  CAS  Google Scholar 

  52. Jacobs RT, Nare B, Wring SA, Orr MD, Chen DT, Sligar JM, Jenks MX, Noe RA, Bowling TS, Mercer LT, Rewerts C, Gaukel E, Owens J, Parham R, Randolph R, Beaudet B, Bacchi CJ, Yarlett N, Plattner JJ, Freund Y, Ding C, Akama T, Zhang YK, Brun R, Kaiser M, Scandale I, Don R. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 Human African trypanosomiasis. PLoS Negl Trop Dis, 2011, 5:e1151

    Article  CAS  Google Scholar 

  53. Kumar JS, Alam MA, Gurrapu S, Nelson G, Williams M, Corsello MA, Johnson JL, Jonnalagadda SC, Mereddy VR. Synthesis and biological evaluation of novel benzoxaboroles as potential antimicrobial and anticancer agents. J Heterocyclic Chem, 2013. doi: 10.1002/jhet.1777

    Google Scholar 

  54. Kabalka GW, Yao ML. Anticancer agents. Med Chem, 2006, 6:111–125

    CAS  Google Scholar 

  55. Xu J, Gu Q, Liu HB, Zhou JJ, Bu XZ, Huang ZS, Lu G, Li D, Wei DQ, Wang L, Gu LQ. Chemomics and drug innovation. Sci China Chem, 2013, 56:71–85

    Article  CAS  Google Scholar 

  56. Printsevskaya SS, Reznikova MI, Korolev AM, Lapa GB, Olsufyeva EN, Preobrazhenskaya MN, Plattner JJ, Zhang YK. Synthesis and study of antibacterial activities of antibacterial glycopeptide antibiotics conjugated with benzoxaboroles. Future Med Chem, 2013, 5:641–652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuChen Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhu, M., Lin, Y. et al. The synthesis of benzoxaboroles and their applications in medicinal chemistry. Sci. China Chem. 56, 1372–1381 (2013). https://doi.org/10.1007/s11426-013-4981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4981-y

Keywords

Navigation