Skip to main content
Log in

Dissociative chemisorption dynamics of small molecules on metal surfaces

  • Reviews
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Much progress has been achieved for both experimental and theoretical studies on the dissociative chemisorption of molecules on surfaces. Quantum state-resolved experimental data has provided unprecedented details for these fundamental steps in heterogeneous catalysis, while the quantitative dynamics is still not fully understood in theory. An in-depth understanding of experimental observations relies on accurate dynamical calculations, in which the potential energy surface and adequate quantum mechanical implementation are desired. This article summarizes the current methodologies on the construction of potential energy surfaces and the quantum mechanical treatments, some of which are promising for future applications. The challenges in this field are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chorkendorff I, Niemantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Weinheim: Wiley-VCH, 2003

    Google Scholar 

  2. Somorjai GA. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994

    Google Scholar 

  3. Henderson MA. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf Sci Rep, 2002, 46: 1–308

    CAS  Google Scholar 

  4. Rostrup-Nielsen JR, in Catalysis, Science and Technology, edited by Anderson JR, Boudart M. Berlin: Springer-Verlag, 1984, Vol. 5

  5. Sitz GO. Gas surface interactions studied with state-prepared molecules. Rep Prog Phys, 2002, 65: 1165–1193

    CAS  Google Scholar 

  6. Juurlink LBF, Killelea DR, Utz AL. State-resolved probes of methane dissociation dynamics. Prog Surf Sci, 2009, 84: 69–134

    CAS  Google Scholar 

  7. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  8. Greeley J, Norskov JK, Mavrikakis M. Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem, 2002, 53: 319–348

    CAS  Google Scholar 

  9. Díaz C, Pijper E, Olsen RA, Busnengo HF, Auerbach DJ, Kroes GJ. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111). Science, 2009, 326: 832–834

    Google Scholar 

  10. Kroes GJ. Towards chemically accurate simulation of molecule-surface reactions. Phys Chem Chem Phys, 2012, 14: 14966–14981

    CAS  Google Scholar 

  11. Kroes GJ, Gross A, Baerends EJ, Scheffler M, McCormack DA. Quantum theory of dissociative chemisorption on metal surfaces. Acc Chem Res, 2002, 35: 193–200

    CAS  Google Scholar 

  12. Kroes GJ. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on metal surfaces. Prog Surf Sci, 1999, 60: 1–85

    CAS  Google Scholar 

  13. Utz AL. Mode selective chemistry at surfaces. Curr Opin Solid St M, 2009, 13: 4–12

    CAS  Google Scholar 

  14. Wodtke AM, Matsiev D, Auerbach DJ. Energy transfer and chemical dynamics at solid surfaces: The special role of charge transfer. Prog Surf Sci, 2008, 83: 167–214

    CAS  Google Scholar 

  15. Mccreery JH, Wolken G. Model potential for chemisorption-H2 + W(001). J Chem Phys, 1975, 63: 2340–2349

    CAS  Google Scholar 

  16. Busnengo HF, Salin A, Dong W. Representation of the 6D potential energy surface for a diatomic molecule near a solid surface. J Chem Phys, 2000, 112: 7641–7651

    CAS  Google Scholar 

  17. Crespos C, Collins MA, Pijper E, Kroes GJ. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111). J Chem Phys, 2004, 120: 2392–2404

    CAS  Google Scholar 

  18. Jiang B, Ren X, Xie D, Guo H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc Natl Acad Sci USA, 2012, 109: 10224–10227

    CAS  Google Scholar 

  19. Jiang B, Liu R, Li J, Xie D, Yang MH, Guo H. Mode selectivity in methane dissociative chemisorption on Ni(111). Chem Sci, 2013, 4: 3249–3254

    CAS  Google Scholar 

  20. Blank TB, Brown SD, Calhoun AW, Doren DJ. Neural-network models of potential-energy surfaces. J Chem Phys, 1995, 103: 4129–4137

    CAS  Google Scholar 

  21. Blank TB, Brown SD. Data-processing using neural networks. Anal Chim Acta, 1993, 277: 273–287

    CAS  Google Scholar 

  22. Lorenz S, Scheffler M, Gross A. Descriptions of surface chemical reactions using a neural network representation of the potentialenergy surface. Phys Rev B, 2006, 73: 115431

    Google Scholar 

  23. Schatz GC. The analytical representation of electronic potentialenergy surfaces. Rev Mod Phys, 1989, 61: 669–688

    CAS  Google Scholar 

  24. Sato S. Potential energy surface of the system of 3 atoms. J Chem Phys, 1955, 23: 2465–2466

    CAS  Google Scholar 

  25. Truhlar DG, Steckler R, Gordon MS. Potential-energy surfaces for polyatomic reaction dynamics. Chem Rev, 1987, 87: 217–236

    CAS  Google Scholar 

  26. Dai J, Zhang JZH. Quantum adsorption dynamics of a diatomic molecule on surface: Four-dimensional fixed-site model for H2 on Cu(111). J Chem Phys, 1995, 102: 6280–6289

    CAS  Google Scholar 

  27. Caratzoulas S, Jackson B, Persson M. Eley-Rideal and hot-atom reaction dynamics of H(g) with H adsorbed on Cu(111). J Chem Phys, 1997, 107: 6420–6431

    CAS  Google Scholar 

  28. Persson M, Stromquist J, Bengtsson L, Jackson B, Shalashilin DV, Hammer B. A first principles potential enregy surface for Eley-Rideal reaction dynamics of H atoms on Cu(111). J Chem Phys, 1999, 110: 2240–2249

    CAS  Google Scholar 

  29. Carre M-N, Jackson B. Dissociative chemisorption of CH4 on Ni: The role of molecular orientation. J Chem Phys, 1998, 108: 3722–3730

    CAS  Google Scholar 

  30. Xiang Y, Zhang JZH, Wang DY. Semirigid vibrating rotor target model for CH4 dissociation on a Ni(111) surface. J Chem Phys, 2002, 117: 7698–7704

    CAS  Google Scholar 

  31. Martin-Gondre L, Crespos C, Larregaray P, Rayez JC, Conte D, van Ootegem B. Detailed description of the flexible periodic London-Eyring-Polanyi-Sato potential energy function. Chem Phys, 2010, 367: 136–147

    CAS  Google Scholar 

  32. Martin-Gondre L, Crespos C, Larregaray P, Rayez JC, van Ootegem B, Conte D. Is the LEPS potential accurate enough to investigate the dissociation of diatomic molecules on surfaces? Chem Phys Lett, 2009, 471: 136–142

    CAS  Google Scholar 

  33. Busnengo HF, Crespos C, Dong W, Rayez JC, Salin A. Classical dynamics of dissociative adsorption for a nonactivated system: The role of zero point energy. J Chem Phys, 2002, 116: 9005–9013

    CAS  Google Scholar 

  34. Olsen RA, Busnengo HF, Salin A, Somers MF, Kroes GJ, Baerends EJ. Constructing accurate potential energy surfaces for a diatomic molecule interacting with a solid surface: H2 + Pt(111) and H2 + Cu(100). J Chem Phys, 2002, 116: 3841–3855

    CAS  Google Scholar 

  35. Alducin M, Muino RD, Busnengo HF, Salin A. Why N2 molecules with thermal energy abundantly dissociate on W(100) and not on W(110). Phys Rev Lett, 2006, 97: 056102

    CAS  Google Scholar 

  36. Diaz C, Olsen RA, Busnengo HF, Kroes GJ. Dynamics on six-dimensional potential energy surfaces for H2/Cu(111): Corrugation reducing procedure versus modified shepard interpolation method and PW91 versus RPBE. J Phys Chem C, 2010, 114: 11192–11201

    CAS  Google Scholar 

  37. Collins MA. Molecular potential-energy surfaces for chemical reaction dynamics. Theo Chem Acc, 2002, 108: 313–323

    CAS  Google Scholar 

  38. Ischtwan J, Collins MA. Molecular-potential energy surfaces by interpolation. J Chem Phys, 1994, 100: 8080–8088

    CAS  Google Scholar 

  39. Diaz C, Vincent JK, Krishnamohan GP, Olsen RA, Kroes GJ, Honkala K, Norskov JK. Reactive and nonreactive scattering of N2 from Ru(0001): A six-dimensional adiabatic study. J Chem Phys, 2006, 125: 114706

    CAS  Google Scholar 

  40. Groot IMN, Juanes-Marcos JC, Diaz C, Somers MF, Olsen RA, Kroes GJ. Dynamics of dissociative adsorption of hydrogen on a CO-precovered Ru(0001) surface: A comparison of theoretical and experimental results. Phys Chem Chem Phys, 2010, 12: 1331–1340

    CAS  Google Scholar 

  41. Krishnamohan GP, Olsen RA, Kroes GJ, Gatti F, Woittequand S. Quantum dynamics of dissociative chemisorption of CH4 on Ni(111): Influence of the bending vibration. J Chem Phys, 2010, 133: 144308–144322

    CAS  Google Scholar 

  42. Bowman JM, Czakó G, Fu B. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys Chem Chem Phys, 2011, 13: 8094–8111

    CAS  Google Scholar 

  43. Braams BJ, Bowman JM. Permutationally invariant potential energy surfaces in high dimensionality. Int Rev Phys Chem, 2009, 28: 577–606

    CAS  Google Scholar 

  44. Xie Z, Bowman JM. Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization. J Chem Theo Comp, 2010, 6: 26–34

    CAS  Google Scholar 

  45. Huang XC, Braams BJ, Bowman JM. Ab initio potential energy and dipole moment surfaces for H5O2 +. J Chem Phys, 2005, 122: 044308

    Google Scholar 

  46. Czakó G, Shepler BC, Braams BJ, Bowman JM. Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F+CH4 → HF+CH3 reaction. J Chem Phys, 2009, 130: 084301

    Google Scholar 

  47. Czakó G, Bowman JM. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P,2P1/3) + CH4 → HCl + CH3 and H + CH3Cl reactions. J Chem Phys, 2012, 136: 044307

    Google Scholar 

  48. Czakó G, Bowman JM. Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface. Proc Natl Acad Sci USA, 2012, 109: 7997–8001

    Google Scholar 

  49. Li J, Wang Y, Jiang B, Ma J, Dawes R, Xie D, Bowman JM, Guo H. Communication: A chemically accurate global potential energy surface for the HO + CO → H + CO2 reaction. J Chem Phys, 2012, 136: 041103

    Google Scholar 

  50. Li J, Dawes R, Guo H. An ab initio based full-dimensional global potential energy surface for FH2O(X2A′) and dynamics for the F + H2O → HF + HO reaction J Chem Phys, 2012, 137: 094304

    Google Scholar 

  51. Li J, Guo H. A new ab initio based global HOOH(13A″) potential energy surface for the O(3P) + H2O(X1A1) ↔ OH(X2Pi) + OH(X2Pi) reaction. J Chem Phys, 2013, 138: 194304

    Google Scholar 

  52. Jiang B, Xie D, Guo H. Vibrationally mediated bond selective dissociative chemisorption of HOD on Cu(111). Chem Sci, 2013, 4: 503–508

    CAS  Google Scholar 

  53. Jiang B, Li J, Xie DQ, Guo H. Effects of reactant internal excitation and orientation on dissociative chemisorption of H2O on Cu(111): Quasi-seven-dimensional quantum dynamics on a refined potential energy surface. J Chem Phys, 2013, 138: 044704

    Google Scholar 

  54. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2: 359–366

    Google Scholar 

  55. Behler J. Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys Chem Chem Phys, 2011, 13: 17930–17955

    CAS  Google Scholar 

  56. Behler J, Lorenz S, Reuter K. Representing molecule-surface interactions with symmetry-adapted neural networks. J Chem Phys, 2007, 127: 014705

    Google Scholar 

  57. Ludwig J, Vlachos DG. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. J Chem Phys, 2007, 127: 154716

    Google Scholar 

  58. Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput, 1997, 9: 461–478

    Google Scholar 

  59. Blank TB, Brown SD. Adaptive, global, extended Kalman filters for training feedforward neural networks. J Chemometr, 1994, 8: 391–407

    CAS  Google Scholar 

  60. Witkoskie JB, Doren DJ. Neural network models of potential energy surfaces: Prototypical Examples. J Chem Theory Comput, 2004, 1: 14–23

    Google Scholar 

  61. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  62. Raff LM, Malshe M, Hagan M, Doughan DI, Rockley MG, Komanduri R. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks. J Chem Phys, 2005, 122: 084104

    CAS  Google Scholar 

  63. M. Le H, Huynh S, Raff LM. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting. J Chem Phys, 2009, 131: 014107

    Google Scholar 

  64. Tiwari AK, Nave S, Jackson B. The temperature dependence of methane dissociation on Ni(111) and Pt(111): Mixed quantum-classical studies of the lattice response. J Chem Phys, 2010, 132: 134702

    Google Scholar 

  65. Tiwari AK, Nave S, Jackson B. Methane dissociation on Ni(111): A new understanding of the lattice effect. Phys Rev Lett, 2009, 103: 253201

    Google Scholar 

  66. Nave S, Jackson B. Methane dissociation on Ni(111) and Pt(111): Energetic and dynamical studies. J Chem Phys, 2009, 130: 054701

    Google Scholar 

  67. Nave S, Jackson B. Methane dissociation on Ni(111): The effects of lattice motion and relaxation on reactivity. J Chem Phys, 2007, 127: 224702

    Google Scholar 

  68. Nave S, Jackson B. Methane dissociation on Ni(111): The role of lattice reconstruction. Phys Rev Lett, 2007, 98: 173003

    Google Scholar 

  69. Jackson B, Nave S. The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion. J Chem Phys, 2013, 138: 174705

    Google Scholar 

  70. Jackson B, Nave S. The dissociative chemisorption of methane on Ni(100): Reaction path description of mode-selective chemistry. J Chem Phys, 2011, 135: 114701

    Google Scholar 

  71. Sheng J, Zhang JZH. Dissociative chemisorption of H2 on Ni surface: Time-dependent quantum dynamics calculation and comparison with experiment. J Chem Phys, 1992, 96: 3866–3874

    CAS  Google Scholar 

  72. Sheng J, Zhang JZH. An algebraic variational approach to dissociative adsorption of a diatomic molecule on a smooth metal-surface. J Chem Phys, 1992, 97: 6784–6791

    CAS  Google Scholar 

  73. Jackson B, Metiu H. The dynamics of H2 dissociation on Ni(100): A quantum mechanical study of a restricted two-dimentional model. J Chem Phys, 1986, 86: 1026–1035

    Google Scholar 

  74. Persson M, Jackson B. Flat surface study of the Eley-Rideal dynamics of recombinative desorption of hydrogen on a metal surface. J Chem Phys, 1995, 102: 1078–1093

    CAS  Google Scholar 

  75. Kroes G-J, Baerends EJ, Mowrey RC. Six-dimensional quantum dynamics of dissociative chemisorption of (v = 0, j = 0) H2 on Cu(100). Phys Rev Lett, 1997, 78: 3583–3586

    CAS  Google Scholar 

  76. Dai J, Light JC. Six dimensional quantum dynamics study for dissociative adsorption of H2 on Cu(111) surface. J Chem Phys, 1997, 107: 1676

    CAS  Google Scholar 

  77. Kosloff D, Kosloff R. A Fourier method solution for the time dependent Schrodinger equation as a tool in molecular dynamics. J Comput Phys, 1983, 52: 35–53

    CAS  Google Scholar 

  78. Balint-Kurti GG, Dixon RN, Marston CC. Time-dependent quantum dynamics of molecular photofragmentation processes. J Chem Soc Faraday Trans, 1990, 86: 1741–1749

    CAS  Google Scholar 

  79. Mowrey RC, Kroes GJ. Application of an efficient asymptotic analysis method to molecule-surface scattering. J Chem Phys, 1995, 103: 1216–1225

    CAS  Google Scholar 

  80. Colbert DT, Miller WH. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J Chem Phys, 1992, 96: 1982–1991

    CAS  Google Scholar 

  81. Flect Jr. JA, Morris JR, Feit MD. Time-dependent propagation of high energy laser beam through the atmosphere. Appl Phys, 1976, 10: 129–160

    Google Scholar 

  82. Diaz C, Olsen RA, Auerbach DJ, Kroes GJ. Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Phys Chem Chem Phys, 2010, 12: 6499–6519

    CAS  Google Scholar 

  83. Sementa L, Wijzenbroek M, van Kolck BJ, Somers MF, Al-Halabi A, Busnengo HF, Olsen RA, Kroes GJ, Rutkowski M, Thewes C, Kleimeier NF, Zacharias H. Reactive scattering of H2 from Cu(100): Comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment. J Chem Phys, 2013, 138: 044708–044719

    CAS  Google Scholar 

  84. Kroes GJ, Diaz C, Pijper E, Olsen RA, Auerbach DJ. Apparent failure of the Born-Oppenheimer static surface model for vibrational excitation of molecular hydrogen on copper. P Natl Acad Sci USA, 2010, 107: 20881–20886

    CAS  Google Scholar 

  85. Light JC, Carrington Jr. T. Discrete-variable representations and their utilization. Adv Chem Phys, 2000, 114: 263–310

    Google Scholar 

  86. Echave J, Clary DC. Potential optimized discrete variable representation. Chem Phys Lett, 1992, 190: 225–230

    CAS  Google Scholar 

  87. Wei H, Carrington Jr. T. The discrete variable representation of a triatomic Hamiltonian in bond length bond angle coordinates. J Chem Phys, 1992, 97: 3029–2037

    CAS  Google Scholar 

  88. Zare RN. Angular Momentum. New York: Wiley, 1988

    Google Scholar 

  89. Jiang B, Xie D, Guo H. Calculation of multiple initial state selected reaction probabilities from Chebyshev correlation functions. Influence of reactant rotational and vibrational excitation on reaction H + H2O → OH + H2. J Chem Phys, 2011, 135: 084112

    Google Scholar 

  90. Miller WH. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J Chem Phys, 1974, 61: 1823–1834

    CAS  Google Scholar 

  91. Miller WH, Schwartz SD, Tromp JW. Quantum mechanical rate constants for bimolecular reactions. J Chem Phys, 1983, 79: 4889–4899

    CAS  Google Scholar 

  92. Park TP, Light JC. Unitary quantum time evolution by iterative Lanczos reduction. J Chem Phys, 1986, 85: 5870–5876

    CAS  Google Scholar 

  93. Park TP, Light JC. Quantum flux operators and thermal rate constant: Collinear H + H2. J Chem Phys, 1988, 88: 4897–4912

    CAS  Google Scholar 

  94. Zhang DH, Light JC. Cumulative reaction probability via transition state wave packets. J Chem Phys, 1996, 104: 6184–6191

    CAS  Google Scholar 

  95. Zhu W, Huang Y, Kouri DJ, Chandler C, Hoffman DK. Orthogonal polynomial expansion of the spectral density operator and the calculation of bound state energies and eigenfunctions. Chem Phys Lett, 1994, 217: 73–79

    CAS  Google Scholar 

  96. Mandelshtam VA, Taylor HS. A simple recursion polynomial expansion of the Green’s function with absorbing boundary conditions. Application to the reactive scattering. J Chem Phys, 1995, 103: 2903–2907

    CAS  Google Scholar 

  97. Gokhale AA, Dumesic JA, Mavrikakis M. On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc, 2008, 130: 1402–1414

    CAS  Google Scholar 

  98. Panczyk T, Fiorin V, Blanco-Alemany R, King DA. Dynamics of water adsorption on Pt{110}-(1x2): A molecular dynamics study. J Chem Phys, 2009, 131: 064703

    Google Scholar 

  99. Luntz AC, Harris J. CH4 dissociation on metals: A quantum dynamics model. Surf Sci, 1991, 258: 397–426

    CAS  Google Scholar 

  100. Jansen APJ, Burghgraef H. MCTDH study of CH4 dissociation on Ni(111). Surf Sci, 1995, 344: 149–158

    CAS  Google Scholar 

  101. Halonen L, Bernasek SL, Nesbitt DJ. Reactivity of vibrationally excited methane on nickle surfaces. J Chem Phys, 2001, 115: 5611–5619

    CAS  Google Scholar 

  102. Liu R, Xiong H, Yang M. An eight-dimensional quantum mechanical Hamiltonian for X + YCZ3 system and its applications to H + CH4 reaction. J Chem Phys, 2012, 137: 174113

    Google Scholar 

  103. Meyer H-D, Manthe U, Cederbaum LS. The multi-configuration time-dependent Hartree approach. Chem Phys Lett, 1990, 165: 73–78

    CAS  Google Scholar 

  104. Beck MH, Jackle A, Worth GA, Meyer HD. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys Rep, 2000, 324: 1–105

    CAS  Google Scholar 

  105. Crespos C, Meyer HD, Mowrey RC, Kroes GJ. Multiconfiguration time-dependent Hartree method applied to molecular dissociation on surfaces: H2 + Pt(111). J Chem Phys, 2006, 124: 074706

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaiQian Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Xie, D. Dissociative chemisorption dynamics of small molecules on metal surfaces. Sci. China Chem. 57, 87–99 (2014). https://doi.org/10.1007/s11426-013-4976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4976-8

Keywords

Navigation