Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Science China Chemistry
  3. Article
Multiple biological functions and pharmacological effects of lycorine
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Pharmacological effects of harmine and its derivatives: a review

18 November 2020

Liang Zhang, Dengchang Li & Shenglan Yu

The traditional uses, secondary metabolites, and pharmacology of Lycopodium species

10 March 2021

Bo Wang, Canyuan Guan & Qiang Fu

Unravelling the pharmacological properties of cryptolepine and its derivatives: a mini-review insight

17 October 2022

Champa Keeya Tudu, Anustup Bandyopadhyay, … Abhijit Dey

Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics

16 July 2021

Mao Deng, Huijuan Chen, … Xiaofang Li

Recently isolated lycodine-type Lycopodium alkaloids and their total synthesis: a review

24 November 2020

Shriniwas P. Patil

Pharmacological Profile of Garcinielliptone FC from Platonia insignis

01 April 2022

Maria de Nazaré Correia Soeiro, Gérard Vergoten & Christian Bailly

Pyrrolidine alkaloids and their promises in pharmacotherapy

09 January 2020

Muhammad Torequl Islam & Mohammad Suleiman Mubarak

The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs

07 May 2020

Lucie Cahlíková, Ippei Kawano, … Radim Havelek

A Pharmacological Insight of Piperlongumine, Bioactive Validating Its Therapeutic Efficacy as a Drug to Treat Inflammatory Diseases

21 February 2023

M. Zhao, X. Wang, … M. Sun

Download PDF
  • Reviews
  • Published: 24 August 2013

Multiple biological functions and pharmacological effects of lycorine

  • ZhiFei Cao1,
  • Ping Yang1 &
  • QuanSheng Zhou1 

Science China Chemistry volume 56, pages 1382–1391 (2013)Cite this article

  • 1624 Accesses

  • 48 Citations

  • 5 Altmetric

  • Metrics details

Abstract

Lycorine is the major active component from the amaryllidaceae family plant Lycoris radiate, a represent traditional Chinese medicinal herb, and is one of the typical alkaloids with pyrrolophenanthridine nucleus core. Lycorine has drawn great interest in medicinal field due to its divergent chemical structures and multiple biological functions, as well as pharmacological effects on various diseases. Accumulated evidence shows that lycorine not only possesses strong pharmacological effects on many diseases, including anti-leukemia, anti-tumor, anti-angiogenesis, anti-virus, anti-bacteria, anti-inflammation, and antimalaria, but also exerts many other biological functions, such as inhibition of acetylcholinesterase and topoisomerase, suppression of ascorbic acid biosynthesis, and control of circadian period length. Notably, lycorine exhibits its numerous pharmacological effects on various diseases with very low toxicity and mild side effects. The divergent chemical structures, multiple biological functions, and very low toxicity of lycorine imply that the agent is a potential drug candidate that warrants for further preclinical and clinic investigation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci U S A, 2008, 105(12): 4826–4831

    CAS  Google Scholar 

  2. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010, 328(5975): 240–243

    CAS  Google Scholar 

  3. Chen J, Wang A, Huo HH, Huang PQ. Progress on the total synthesis of natural products in China: From 2006 to 2010. Sci China Chem, 2012, 55(7): 1175–1212

    CAS  Google Scholar 

  4. Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, Evidente A, Pottier L. Lycorine and its derivatives for anticancer drug design. Mini Rev Med Chem, 2010, 10(1): 41–50

    CAS  Google Scholar 

  5. Elgorashi EE, Drewes SE, Van Staden J. Organ-to-organ and seasonal variation in alkaloids from Crinum macowanii. Fitoterapia, 2002, 73(6): 490–495

    CAS  Google Scholar 

  6. Cedron JC, Gutierrez D, Flores N, Ravelo AG, Estevez-Braun A. Synthesis and antiplasmodial activity of lycorine derivatives. Bioorg Med Chem, 2010, 18(13): 4694–4701

    CAS  Google Scholar 

  7. Van Goietsenoven G, Andolfi A, Lallemand B, Cimmino A, Lamoral-Theys D, Gras T, Abou-Donia A, Dubois J, Lefranc F, Mathieu V, Kornienko A, Kiss R, Evidente A. Amaryllidaceae alkaloids belonging to different structural subgroups display activity against apoptosis-resistant cancer cells. J Nat Prod, 2010, 73(7): 1223–1227

    Google Scholar 

  8. Liu XS, Jiang J, Jiao XY, Wu YE, Lin JH, Cai YM. Lycorine induces apoptosis and down-regulation of Mcl-1 in human leukemia cells. Cancer Lett, 2009, 274(1): 16–24

    CAS  Google Scholar 

  9. Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le CB, Wauthoz N, Megalizzi V, Gras T, Bruyere C, Dubois J, Mathieu V, Kornienko A, Kiss R, Evidente A. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J Med Chem, 2009, 52(20): 6244–6256

    CAS  Google Scholar 

  10. McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C. Structure-activity studies on the lycorine pharmacophore: A potent inducer of apoptosis in human leukemia cells. Phytochemistry, 2009, 70(7): 913–919

    CAS  Google Scholar 

  11. Liu R, Cao Z, Tu J, Pan Y, Shang B, Zhang G, Bao M, Zhang S, Yang P, Zhou Q. Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res, 2012, 25(5): 630–638

    CAS  Google Scholar 

  12. Cao Z, Yu D, Fu S, Zhang G, Pan Y, Bao M, Tu J, Shang B, Guo P, Yang P, Zhou Q. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol Lett, 2013, 218(2): 174–185

    CAS  Google Scholar 

  13. Szlavik L, Gyuris A, Minarovits J, Forgo P, Molnar J, Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med, 2004, 70(9): 871–873

    CAS  Google Scholar 

  14. Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res, 2005, 67(1): 18–23

    CAS  Google Scholar 

  15. Hwang YC, Chu JJ, Yang PL, Chen W, Yates MV. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res, 2008, 77(3): 232–236

    CAS  Google Scholar 

  16. Zou G, Puig-Basagoiti F, Zhang B, Qing M, Chen L, Pankiewicz KW, Felczak K, Yuan Z, Shi PY. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384(1): 242–252

    CAS  Google Scholar 

  17. Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J, 2011, 8: 483

    Google Scholar 

  18. He J, Qi WB, Wang L, Tian J, Jiao PR, Liu GQ, Ye WC, Liao M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respi Viruses, 2012, doi: 10.1111/irv.12035.

    Google Scholar 

  19. Massardo DR, Manna F, Schafer B, Wolf K, Del GL. Complete absence of mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe leads to resistance towards the alkaloid lycorine. Curr Genet, 1994, 25(1): 80–83

    CAS  Google Scholar 

  20. Del GA, Massardo DR, Manna F, Koltovaya N, Hartings H, Del GL, Wolf K. Correlation of resistance to the alkaloid lycorine with the degree of suppressiveness in petite mutants of Saccharomyces cerevisiae. Curr Microbiol, 1997, 34(6): 382–384

    Google Scholar 

  21. Del GL, Massardo DR, Pontieri P, Wolf K. Interaction between yeast mitochondrial and nuclear genomes: Null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae. Gene, 2005, 354: 9–14

    Google Scholar 

  22. Ch’en MC, Jin SC, Wang YC. Effect of lycorine on the pituitary-adrenal system. Yao Xue Xue Bao, 1965, 12(12): 767–771

    Google Scholar 

  23. Yamazaki Y, Kawano Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-alpha and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull (Tokyo), 2011, 59(3): 388–3891

    CAS  Google Scholar 

  24. Citoglu GS, Acikara OB, Yilmaz BS, Ozbek H. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia, 2012, 83(1): 81–87

    CAS  Google Scholar 

  25. Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L, Yin Z. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol, 2012, 12(1): 249–256

    CAS  Google Scholar 

  26. Elgorashi EE, Stafford GI, Van Staden J. Acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids. Planta Med, 2004, 70(3): 260–262

    CAS  Google Scholar 

  27. Nair JJ, van Staden J. Acetylcholinesterase inhibition within the lycorine series of Amaryllidaceae alkaloids. Nat Prod Commun, 2012, 7(7): 959–962

    CAS  Google Scholar 

  28. Nino J, Hincapie GM, Correa YM, Mosquera OM. Alkaloids of Crinum x powellii “Album” (Amaryllidaceae) and their topoisomerase inhibitory activity. Z Naturforsch C, 2007, 62(3–4): 223–226

    CAS  Google Scholar 

  29. McNulty J, Nair JJ, Singh M, Crankshaw DJ, Holloway AC, Bastida J. Cytochrome P450 3A4 inhibitory activity studies within the lycorine series of alkaloids. Nat Prod Commun, 2010, 5(8): 1195–1200

    CAS  Google Scholar 

  30. Kushida N, Atsumi S, Koyano T, Umezawa K. Induction of flat morphology in K-ras-transformed fibroblasts by lycorine, an alkaloid isolated from the tropical plant Eucharis grandiflora. Drugs Exp Clin Res, 1997, 23(5–6): 151–155

    CAS  Google Scholar 

  31. Baez A, Vazquez D. Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship. Biochim Biophys Acta, 1978, 518(1): 95–103

    CAS  Google Scholar 

  32. Arrigoni O, Arrigoni-Liso R, Calabrese G. Ascorbic Acid as a factor controlling the development of cyanide-insensitive respiration. Science, 1976, 194(4262): 332–333

    CAS  Google Scholar 

  33. Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M. L-galactono-gamma-lactone dehydrogenase from sweet potato: Purification and cDNA sequence analysis. Plant Cell Physiol, 1998, 39(12): 1350–1358

    CAS  Google Scholar 

  34. Mellado M, Contreras RA, Gonzalez A, Dennett G, Moenne A. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol Biochem, 2012, 51: 102–108

    CAS  Google Scholar 

  35. Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot, 2012, 63(5): 1809–1822

    CAS  Google Scholar 

  36. Schrader KK, Andolfi A, Cantrell CL, Cimmino A, Duke SO, Osbrink W, Wedge DE, Evidente A. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem Biodivers, 2010, 7(9): 2261–2280

    CAS  Google Scholar 

  37. Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5′-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int, 2010, 59(2): 226–231

    CAS  Google Scholar 

  38. Giordani RB, Vieira PB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry, 2011, 72(7): 645–650

    CAS  Google Scholar 

  39. Abbassy MA, el-Gougary OA, el-Hamady S, Sholo MA. Insecticidal, acaricidal and synergistic effects of soosan, Pancratium maritimum extracts and constituents. J Egypt Soc Parasitol, 1998, 28(1): 197–205

    CAS  Google Scholar 

  40. Onishi Y, Kawano Y, Yamazaki Y. Lycorine, a candidate for the control of period length in mammalian cells. Cell Physiol Biochem, 2012, 29(3–4): 407–416

    CAS  Google Scholar 

  41. Ch’en MC, Li CH. Some pharmacological actions of lycorine. Yao Xue Xue Bao, 1965, 12(9): 594–600

    Google Scholar 

  42. Wu ZP, Chen Y, Xia B, Wang M, Dong YF, Feng X. Two novel ceramides with a phytosphingolipid and a tertiary amide structure from Zephyranthes candida. Lipids, 2009, 44(1): 63–70

    CAS  Google Scholar 

  43. Nair JJ, Aremu AO, van Staden J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J Ethnopharmacol, 2011, 137(3): 1102–1106

    CAS  Google Scholar 

  44. Reyes-Chilpa R, Berkov S, Hernandez-Ortega S, Jankowski CK, Arseneau S, Clotet-Codina I, Este JA, Codina C, Viladomat F, Bastida J. Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor. Molecules, 2011, 16(11): 9520–9533

    CAS  Google Scholar 

  45. Salehi SMH, Azadi B, Amin G, Amini M, Sharifzadeh M. The first phytochemical report of Galanthus transcaucasicus Fomin. Daru, 2010, 18(2): 124–127

    Google Scholar 

  46. Katoch D, Kumar S, Kumar N, Singh B. Simultaneous quantification of Amaryllidaceae alkaloids from Zephyranthes grandiflora by UPLC-DAD/ESI-MS/MS. J Pharm Biomed Anal, 2012, 71: 187–192

    CAS  Google Scholar 

  47. Georgieva L, Berkov S, Kondakova V, Bastida J, Viladomat F, Atanassov A, Codina C. Alkaloid variability in Leucojum aestivum from wild populations. Z Naturforsch C, 2007, 62(9–10): 627–635

    CAS  Google Scholar 

  48. Mu HM, Wang R, Li XD, Jiang YM, Peng F, Xia B. Alkaloid accumulation in different parts and ages of Lycoris chinensis. Z Naturforsch C, 2010, 65(7–8): 458–462

    CAS  Google Scholar 

  49. Ptak A, El TA, Dupire F, Boisbrun M, Henry M, Chapleur Y, Mos M, Laurain-Mattar D. LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. J Nat Prod, 2009, 72(1): 142–147

    CAS  Google Scholar 

  50. Kaya GI, Cicek D, Sarikaya B, Onur MA, Somer NU. HPLC — DAD analysis of lycorine in Amaryllidaceae species. Nat Prod Commun, 2010, 5(6): 873–876

    CAS  Google Scholar 

  51. Yamada K, Yamashita M, Sumiyoshi T, Nishimura K, Tomioka K. Total synthesis of (-)-lycorine and (-)-2-epi-lycorine by asymmetric conjugate addition cascade. Org Lett, 2009, 11(7): 1631–1633

    CAS  Google Scholar 

  52. Jones MT, Schwartz BD, Willis AC, Banwell MG. Rapid and enantioselective assembly of the lycorine framework using chemoenzymatic techniques. Org Lett, 2009, 11(15): 3506–3509

    CAS  Google Scholar 

  53. John R, Mohamed SK, Mahmoud AR, Ahmed AA. Crinum, an endless source of bioactive principles: A review. Part I. Crinum alkaloids: Lycorine-type alkaloids. IJPSR, 2012, 3(7): 1883–1890

    Google Scholar 

  54. Jimenez A, Santos A, Alonso G, Vazquez D. Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. Biochim Biophys Acta, 1976, 425(3): 342–348

    CAS  Google Scholar 

  55. Liu J, Hu WX, He LF, Ye M, Li Y. Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett, 2004, 578(3): 245–250

    CAS  Google Scholar 

  56. Evidente A, Kireev AS, Jenkins AR, Romero AE, Steelant WF, Van Slambrouck S, Kornienko A. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med, 2009, 75(5): 501–507

    CAS  Google Scholar 

  57. Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX. Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep, 2007, 17(2): 377–384

    CAS  Google Scholar 

  58. Li L, Dai HJ, Ye M, Wang SL, Xiao XJ, Zheng J, Chen HY, Luo YH, Liu J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int, 2012, 12(1): 49

    CAS  Google Scholar 

  59. Min BS, Gao JJ, Nakamura N, Kim YH, Hattori M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem Pharm Bull (Tokyo), 2001, 49(9): 1217–1219

    CAS  Google Scholar 

  60. Liu J, Li Y, Tang LJ, Zhang GP, Hu WX. Treatment of lycorine on SCID mice model with human APL cells. Biomed Pharmacother, 2007, 61(4): 229–234

    CAS  Google Scholar 

  61. Liu J, Hu JL, Shi BW, He Y, Hu WX. Up-regulation of p21 and TNF-alpha is mediated in lycorine-induced death of HL-60 cells. Cancer Cell Int, 2010, 10: 25

    Google Scholar 

  62. Hayden RE, Pratt G, Drayson MT, Bunce CM. Lycorine sensitizes CD40 ligand-protected chronic lymphocytic leukemia cells to bezafibrate- and medroxyprogesterone acetate-induced apoptosis but dasatanib does not overcome reported CD40-mediated drug resistance. Haematologica, 2010, 95(11): 1889–1896

    CAS  Google Scholar 

  63. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med, 1972, 136(2): 261–276

    Google Scholar 

  64. Meadows KL, Hurwitz HI. Anti-VEGF therapies in the clinic.LID Cold Spring Harb Perspect Med, 2012, 2(10). doi: 10.1101/cshperspect.a006577.

    Google Scholar 

  65. Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR. Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 2012, 32(12):1095–1111

    CAS  Google Scholar 

  66. Braghiroli MI, Sabbaga J, Hoff PM. Bevacizumab: Overview of the literature. Expert Rev Anticancer Ther, 2012, 12(5): 567–580

    CAS  Google Scholar 

  67. Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res, 2012, 72(8): 1909–1914

    CAS  Google Scholar 

  68. Wu JM, Staton CA. Anti-angiogenic drug discovery: Lessons from the past and thoughts for the future. Expert Opin Drug Discov, 2012, 7(8): 723–743

    CAS  Google Scholar 

  69. Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie, 2013, 95(6): 1110–1119

    CAS  Google Scholar 

  70. Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biol chem, 2013, 153(3): 243–249

    CAS  Google Scholar 

  71. Chen CT, Hung MC. Beyond anti-VEGF: Dual-targeting antiangiogenic and antiproliferative therapy. Am J Transl Res, 2013, 5(4): 393–403

    CAS  Google Scholar 

  72. Liu R, Yang K, Meng C, Zhang Z, Xu Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther, 2012, 13(7): 527–533

    CAS  Google Scholar 

  73. Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol, 2012, 9(9): 498–509

    CAS  Google Scholar 

  74. Shang B, Cao Z, Zhou Q. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med, 2012, 6(1): 67–78

    Google Scholar 

  75. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347): 298–307

    CAS  Google Scholar 

  76. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor vasculogenic mimicry is associated with poor prognosis of human cancer patients: A systemic review and meta-analysis. Eur J Cancer, 2013, doi: 10.1016/j.ejca.2013.07.148

    Google Scholar 

  77. Bao M, Cao Z, Yu D, Fu S, Zhang G, Yang P, Pan Y, Yang B, Han H, Zhou Q. Columbamine suppresses the proliferation and neovascularization of metastatic osteosarcoma U2OS cells with low cytotoxicity. Toxicol Lett, 2012, 215(3): 174–180

    CAS  Google Scholar 

  78. Liu R, Cao Z, Pan Y, Zhang G, Yang P, Guo P, Zhou Q. Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs, 2013, 24(7): 667–676

    CAS  Google Scholar 

  79. Vrijsen R, Vanden BDA, Vlietinck AJ, Boeye A. Lycorine: a eukaryotic termination inhibitor. J Biol Chem, 1986, 261(2): 505–507

    CAS  Google Scholar 

  80. Schrader KK, Avolio F, Andolfi A, Cimmino A, Evidente A. Ungeremine and its hemisynthesized analogues as bactericides against flavobacterium columnare. J Agric Food Chem, 2013, 61(6): 1179–1183

    CAS  Google Scholar 

  81. Mikami M, Kitahara M, Kitano M, Ariki Y, Mimaki Y, Sashida Y, Yamazaki M, Yui S. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull, 1999, 22(7): 674–678

    CAS  Google Scholar 

  82. McNulty J, Nair JJ, Little JR, Brennan JD, Bastida J. Structure-activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg Med Chem Lett, 2010, 20(17): 5290–5294

    CAS  Google Scholar 

  83. Cortese I, Renna G, Siro-Brigiani G, Poli G, Cagiano R. Pharmacology of lycorine. 1. Effect on biliary secretion in the rat. Boll Soc Ital Biol Sper, 1983, 59(9): 1261–1264

    CAS  Google Scholar 

  84. Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon, 2011, 57(1): 117–124

    CAS  Google Scholar 

  85. Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Regenthal R. Dose-dependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs. Toxicon, 2011, 57(1): 117–124

    CAS  Google Scholar 

  86. Kretzing S, Abraham G, Seiwert B, Ungemach FR, Krugel U, Teichert J, Regenthal R. In vivo assessment of antiemetic drugs and mechanism of lycorine-induced nausea and emesis. Arch Toxicol, 2011, 85(12): 1565–1573

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, 215006, China

    ZhiFei Cao, Ping Yang & QuanSheng Zhou

Authors
  1. ZhiFei Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ping Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. QuanSheng Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to QuanSheng Zhou.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, Z., Yang, P. & Zhou, Q. Multiple biological functions and pharmacological effects of lycorine. Sci. China Chem. 56, 1382–1391 (2013). https://doi.org/10.1007/s11426-013-4967-9

Download citation

  • Received: 06 June 2013

  • Accepted: 28 June 2013

  • Published: 24 August 2013

  • Issue Date: October 2013

  • DOI: https://doi.org/10.1007/s11426-013-4967-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • traditional Chinese medicinal herbs
  • lycorine
  • anti-cancer
  • anti-virus
  • angiogenesis
  • neovascularization
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.232.62.64

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.