Skip to main content
Log in

In-situ interaction of nano-PbS with gelatin

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Water-soluble gelatin-PbS bionanocomposites (BNCs) were synthesized via a facile one-pot chemical reaction method at pH 7.40. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis absorption spectra (UV-vis), Fourier transform infrared spectra (FT-IR) and circular dichroism (CD). FT-IR data were used to envisage the binding of PbS particles with oxygen atoms of carbonyl groups of gelatin molecule. The possible integration mechanism between gelatin and PbS was discussed in detail. The effect of Pb2+ and PbS on the conformations of gelatin has also been analyzed by means of UV-vis, CD and FT-IR spectra, resulting in less α-helix content and more open structures (β-sheet, β-turn, or expanded). A new formula to calculate the association constant was proposed according to the relationship between the absorbance of gelatin-PbS BNCs and the free concentration of PbS, and apparent association constants K (298/303/308 K: 3.11/2.00/1.60 × 106 mol/L) at three different temperatures were calculated based on this formula. Thermodynamic parameters such as ΔG θ, ΔH θ and ΔS θ were also determined. The results of the thermodynamic investigations indicated that the reaction was spontaneous (ΔG θ < 0), and enthalpy-driven (ΔH θ < 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano, 2012, 6(6): 4585–4602

    Article  CAS  Google Scholar 

  2. Li L, Mu Q, Zhang B, Yan B. Analytical strategies for detecting nanoparticle-protein interactions. Analyst, 2010, 135: 1519–1530.

    Article  CAS  Google Scholar 

  3. Kathiravan A, Paramagura G, Renganathan R. Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. J Mol Struct, 2009, 934: 129–137

    Article  CAS  Google Scholar 

  4. Zolghadri S, Saboury AA, Amin E, Moosavi-Movahedi AA. A spectroscopic study on the interaction between ferric oxide nanoparticles and human hemoglobin. J Iran Chem Soc, 2010, 7: S145–S153

    Article  CAS  Google Scholar 

  5. Yu Y, Zhang K, Sun S. One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl Surf Sci, 2012, 258: 7181–7187

    Article  CAS  Google Scholar 

  6. Zhang J, Ma X, Guo Y, Yang L, Shen Q, Wang H, Ma Z. Size-controllable preparation of bovine serum albumin-conjugated PbS nanoparticles. Mater Chem Phys, 2010, 119: 112–117

    Article  CAS  Google Scholar 

  7. Bakshi MS, Thakur P, Kaur G., Kaur H, Banipal TS, Possmayer F, Petersen NO. Stabilization of PbS nanocrystals by bovine serum albumin in its native and denatured states. Adv Funct Mater, 2009, 19: 1451–1458

    Article  CAS  Google Scholar 

  8. Qin D, Zhang L, He G, Liu Q. Biomimetic synthesis of PbS nanocubes in the lysozyme solution. Mater Lett, 2012, 66: 7–9

    Article  CAS  Google Scholar 

  9. Chatterjee A, Priyam A, Ghosh D, Mondal S, Bhattacharya SC, Saha A. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation. J Lumin, 2012, 132: 545–549

    Article  CAS  Google Scholar 

  10. Wu D, Chen Z, Liu X. Study of the interaction between bovine serum albumin and ZnS quantum dots with spectroscopic techniques. Spectrochim Acta Part A, 2011, 84: 178–183

    Article  CAS  Google Scholar 

  11. Dzagli MM, Canpean V, Iosin M, Mohou MA, Astilean S. Study of the interaction between CdSe/ZnS core-shell quantum dots and bovine serum albumin by spectroscopic techniques. J Photochem Photobiol A, 2010, 215: 118–122

    Article  CAS  Google Scholar 

  12. Asha Jhonsi M, Kathiravan A, Renganathan R, Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B, 2009, 72: 167–172

    Article  CAS  Google Scholar 

  13. Ding L, Zhou PJ, Li SQ, Shi GY, Zhong T, Wu M. Spectroscopic studies on the thermodynamics of L-cysteine capped CdSe/CdS quantum dots-BSA interactions. J Fluoresc, 2010, 21: 17–24

    Article  Google Scholar 

  14. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophs Acta, 2008, 1784: 1020–1027

    Article  CAS  Google Scholar 

  15. Mozafari M, Moztarzadeh F. Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core-shell nanocrystals. J Colloid Interface Sci, 2010, 351: 442–448

    Article  CAS  Google Scholar 

  16. Bakshi MS, Thakur P, Kaur G, Kaur H, Banipal TS, Possmayer F, Petersen NO. Stabilization of PbS nanocrystals by bovine serum albumin in its native and denatured states. Adv Funct Mater, 2009, 19: 1451–1458

    Article  CAS  Google Scholar 

  17. Hoque MS, Benjakul S, Prodpran T. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocolloids, 2011, 25: 82–90

    Article  CAS  Google Scholar 

  18. Kane RS, Stroock AD. Nanobiotechnology: Protein-nanomaterial interactions. Biotechnol Prog, 2007, 23: 316–319

    Article  CAS  Google Scholar 

  19. Wu D, Chen Z, Liu X. Study of the interaction between bovine serum albumin and ZnS quantum dots with spectroscopic techniques. Spectrochimica Acta Part A, 2011, 84: 178–183

    Article  CAS  Google Scholar 

  20. Tang SH, Li YQ. Interaction via in situ binding of CdS nanorods onto gelatin. J Colloid Interface Sci, 2011, 360: 71–77

    Article  CAS  Google Scholar 

  21. Sreekumari Nair P, Radhakrishnan T, Revaprasadu N, Kolawole GA, Luyt AS, Djoković V. Structure and properties of PbS-polyacrylamide nanocomposites. Appl Phys A, 2005, 81: 835–838

    Article  CAS  Google Scholar 

  22. Wang Y, Suna A, Mahler W, Kasowski R. PbS in polymers. From molecules to bulk solids. J Chem Phys, 1987, 87: 7315–7322

    Article  CAS  Google Scholar 

  23. Huang J, Yuan YZ, Liang H. Binding equilibrium study of phosphotungstic acid and HSA or BSA with UV spectrum, fluorescence spectrum and equilibrium dialysis. Sci China Ser B, 2002, 45: 200–207

    Article  CAS  Google Scholar 

  24. Shen XC, Liu XY, Liang H, Lu X. Spectroscopic studies of interaction between bovine hemoglobin and Ag nanoparticles. Acta Chim Sin, 2006, 64: 469–474

    CAS  Google Scholar 

  25. Wang J, Wang S, Liu B, Guo Y, Zhang L, Chen X, Xu R, Zhang X. Sonocatalytic damage of composite TiO2/ZnO powder to bovine serum albumin under ultrasonic irradiation. Inorg Mater, 2010, 46: 644–650

    Article  CAS  Google Scholar 

  26. Wang J, Wu J, Zhang ZH, Zhang XD, Wang L, Xu L, Guo BD, Li H, Tong J. Sonocatalytic damage of bovine serum albumin (BSA) in the presence of nanometer titanium dioxide (TiO2) catalyst. Chinese Chem Lett, 2005, 16: 1105–1108

    CAS  Google Scholar 

  27. Moreels I, Lambert K, Smeets D, Muynck DD, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 2009, 3: 3023–3030

    Article  CAS  Google Scholar 

  28. Staroszczyk H, Pielichowska J, Sztuka K, Stangret J, Kołodziejska I. Molecular and structural characteristics of cod gelatin films modified with EDC and Tgase. Food Chemistry, 2012, 130: 335–343

    Article  CAS  Google Scholar 

  29. Tang SH, Huang ZY, Huang JB. Synthesis and spectral properties of broom-like CdS nanoparticles in gelatin solution. Acta Chim Sin, 2007, 65: 1432–1436

    CAS  Google Scholar 

  30. Zhang L, Yang G, He G, Wang L, Liu Q, Zhang Q, Qin D. Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method. Appl Surf Sci, 2012, 258: 8185–8191

    Article  CAS  Google Scholar 

  31. Yang L, Shen Q, Zhou J, Jiang K. Biomimetic synthesis of CdS nanocrystals in aqueous solution of pepsin. Mater Chem Phys, 2006, 98: 125–130

    Article  CAS  Google Scholar 

  32. Roach P, Farrar D, Perry CC. Copper selenide nanosnake: Bovine serum albumin-assisted room temperature controllable synthesis and characterization. J Am Chem Soc, 2005, 127: 8168–8173

    Article  CAS  Google Scholar 

  33. Saba RI, Ruysschaert JM, Herchuelz A, Goormaghtigh E. Fourier transform infrared spectroscopy study of the secondary and tertiary structure of the reconstituted Na+/Ca2+ exchanger 70-kDa polypeptide. J Biol Chem, 1999, 274: 15510–15518

    Article  CAS  Google Scholar 

  34. Xie MX, Xu XY, Wang YD, Liu Y. Spectroscopic investigation of the interaction between 2,3-dihydro-4′,5,7-trihydroxyflavone and human serum albumin. Acta Chim Sinica, 2005, 63: 2055–2062

    CAS  Google Scholar 

  35. Shen XC, Liang H, He XW, Wang XS. Recent trends and spectroscopic methods for analysis of the protein conformation with circular dichroism. Chinese J Anal Chem, 2004, 32: 388–394

    CAS  Google Scholar 

  36. Wüstneck R, Buder E, Wetzel R, Hermel H. The modification of the triple helical structure of gelatin in aqueous solution 3. The influence of cationic surfactants. Colloid Polym Sci, 1989, 267: 429–433

    Article  Google Scholar 

  37. Greenfield NJ. Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem, 1999, 18: 236–244

    Article  CAS  Google Scholar 

  38. Lambs L, Révérend BD, Kozlowski H, Berthon G. Metal ion-tetracycline interactions in biological fluids. 9. Circular dichroism spectra of calcium and magnesium complexes with tetracycline, oxytetracycline, doxycycline, and chlortetracycline and discussion of their binding modes. Inorg Chem, 1988, 27: 3001–3012

    Article  CAS  Google Scholar 

  39. Shen XC, Liang H, Guo JH, Song C, He XW, Yuan YZ. Studies on the interaction between Ag+ and human serum albumin. J Inorg Biochem, 2003, 95: 124–130

    Article  CAS  Google Scholar 

  40. Shen XC, Yang Q, Liang H, Yan HG, He XW. Hysteresis effects of the interaction between serum albumins and silver nanoparticles. Sci China Ser B, 2003, 46: 387–398

    Article  CAS  Google Scholar 

  41. Bouklah M, Hammouti B, Lagrenée M, Bentiss F. Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci, 2006, 48: 2831–2842

    Article  CAS  Google Scholar 

  42. Goates JR, Gordon MB, Faux ND. Calculated values for the solubility product constants of the metallic sulfides. J Am Chem Soc, 1952, 74: 835–836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiHua Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Tang, S., Wang, B. et al. In-situ interaction of nano-PbS with gelatin. Sci. China Chem. 56, 1593–1600 (2013). https://doi.org/10.1007/s11426-013-4953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4953-2

Keywords

Navigation