Skip to main content
Log in

Self-assembly and chemical processing of block copolymers: A roadmap towards a diverse array of block copolymer nanostructures

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Block copolymers can yield a diverse array of nanostructures. Their assembly structures are influenced by their inherent structures, and the wide variety of structures that can be prepared especially becomes apparent when one considers the number of routes available to prepare block copolymer assemblies. Some examples include self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order. These assembly routes can also be complemented by processing techniques such as selective crosslinking and etching, the former technique leading to permanent structures, the latter towards sculpted and the combination of the two towards permanent sculpted structures. The combination of these pathways provides extremely versatile routes towards an exciting variety of architectures. This review will attempt to highlight destinations reached by LIU Guojun and coworkers following these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules, 1995, 28(26): 8796–8806

    Article  CAS  Google Scholar 

  2. Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today, 1999, 52(2): 32–38

    Article  CAS  Google Scholar 

  3. Leibler L. Theory of microphase separation in block copolymers. Macromolecules, 1980, 13(6): 1602–1617

    Article  CAS  Google Scholar 

  4. Matsen MW, Bates FS. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29(4): 1091–1098

    Article  CAS  Google Scholar 

  5. Bates FS, Fredrickson GH. Block copolymer thermodynamics: Theory and experiment. Annu Rev Phys Chem, 1990, 41: 525–557

    Article  CAS  Google Scholar 

  6. Matsen MW, Bates FS. Origins of complex self-assembly in block copolymers. Macromolecules, 1996, 29(23): 7641–7644

    Article  CAS  Google Scholar 

  7. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci, 2005, 30(7): 725–782

    Article  CAS  Google Scholar 

  8. Moughton AO, Hillmyer MA, Lodge TP. Multicompartment block polymer micelles. Macromolecules, 2012, 45(1): 2–19

    Article  CAS  Google Scholar 

  9. Schacher F, Reinicke S, Walther A, Schmalz H, Müller AHE. New amphiphilic nanostructures based on block terpolymers made by anionic polymerization. NATO Sci Peace Secur Ser A Chem Biol, 2009, 3: 167–186

    Article  Google Scholar 

  10. Wyman IW, Liu G. Micellar structures of linear triblock terpolymers: Three blocks but many possibilities. Polymer, 2013, 54(8): 1950–1978

    Article  CAS  Google Scholar 

  11. Olsen BD, Segalman RA. Self-assembly of rod-coil block copolymers. Mater Sci Eng, R, 2008, 62(2): 37–66

    Article  CAS  Google Scholar 

  12. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418–2421

    Article  CAS  Google Scholar 

  13. Abetz V, Simon PFW. Phase behaviour and morphologies of block copolymers. Adv Polym Sci, 2005, 189: 125–212

    Article  CAS  Google Scholar 

  14. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science, 1996, 273(5277): 931–933

    Article  CAS  Google Scholar 

  15. Boker A, Knoll A, Elbs H, Abetz V, Müller AHE, Krausch G. Large scale domain alignment of a block copolymer from solution using electric fields. Macromolecules, 2002, 35(4): 1319–1325

    Article  CAS  Google Scholar 

  16. Böker A: Control of block copolymer microdomain orientation from solution using electric fields: Governing parameters and mechanisms. In Nanostructured soft matter; Zvelindovsky A V, Ed.; Springer: Dordrecht, 2007; pp 199–229

    Chapter  Google Scholar 

  17. Kim H, Jeong SM, Park JW. Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod-coils. J Am Chem Soc, 2011, 133(14): 5206–5209

    Article  CAS  Google Scholar 

  18. Lee SJ, Park MJ. Morphological manipulation of ionic block copolymer micelles using an electric field. Langmuir, 2010, 26(23): 17827–17830

    Article  CAS  Google Scholar 

  19. Giacomelli FC, da Silveira NP, Nallet F, Cernoch P, Steinhart M, Stepanek P. Cubic to hexagonal phase transition induced by electric field. Macromolecules, 2010, 43(9): 4261–4267

    Article  CAS  Google Scholar 

  20. Majewski PW, Gopinadhan M, Jang WS, Lutkenhaus JL, Osuji CO. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J Am Chem Soc, 2010, 132(49): 17516–17522

    Article  CAS  Google Scholar 

  21. McCulloch B, Portale G, Bras W, Segalman RA. Increased order-disorder transition temperature for a rod-coil block copolymer in the presence of a magnetic field. Macromolecules, 2011, 44(19): 7503–7507

    Article  CAS  Google Scholar 

  22. Tao Y, Zohar H, Olsen BD, Segalman RA. Hierarchical nanostructure control in rod-coil block copolymers with magnetic fields. Nano Lett, 2007, 7(9): 2742–2746

    Article  CAS  Google Scholar 

  23. Wyman I, Njikang G, Liu G. When emulsification meets self-assembly: The role of emulsification in directing block copolymer assembly Prog Polym Sci, 2011, 36(9): 1152–1183

    Article  CAS  Google Scholar 

  24. Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv Mater, 2006, 18(19): 2505–2521

    Article  CAS  Google Scholar 

  25. Shum HC, Weitz DA. Multicompartment polymersome gel for encapsulation. Soft Matter, 2011, 7(19): 8762–8765

    Article  CAS  Google Scholar 

  26. Wang CW, Sinton D, Moffitt MG. Flow-directed block copolymer micelle morphologies via microfluidic self-assembly. J Am Chem Soc, 2011, 133(46): 18853–18864

    Article  CAS  Google Scholar 

  27. Lin Y, Daga VK, Anderson ER, Gido SP, Watkins JJ. Nanoparticle-driven assembly of block copolymers: A simple route to ordered hybrid materials. J Am Chem Soc, 2011, 133(17): 6513–6516

    Article  CAS  Google Scholar 

  28. Bae KH, Choi SH, Park SY, Lee Y, Park TG. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir, 2006, 22(14): 6380–6384

    Article  CAS  Google Scholar 

  29. Cai Y, Aubrecht KB, Grubbs RB. Thermally induced changes in amphiphilicity drive reversible restructuring of assemblies of abc triblock copolymers with statistical polyether blocks. J Am Chem Soc, 2011, 133(4): 1058–1065

    Article  CAS  Google Scholar 

  30. Schmelz J, Karg M, Hellweg T, Schmalz H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano, 2011, 5(12): 9523–9534

    Article  CAS  Google Scholar 

  31. Darling SB. Directing the self-assembly of block copolymers. Prog Polym Sci, 2007, 32(10): 1152–1204

    Article  CAS  Google Scholar 

  32. Segalman RA. Patterning with block copolymer thin films. Mater Sci Eng R, 2005, 48(6): 191–226

    Article  CAS  Google Scholar 

  33. Herr DJC. Directed block copolymer self-assembly for nanoelectronics fabrication. J Mater Res, 2011, 26(2): 122–139

    Article  CAS  Google Scholar 

  34. Zhang J, Yu X, Yang P, Peng J, Luo C, Huang W, Yanchun Han Y. Microphase separation of block copolymer thin films. Macromol Rapid Commun, 2010, 31(7): 591–608

    Article  CAS  Google Scholar 

  35. Lu Z, Liu G, Liu F. Block copolymer microspheres containing intricate nanometer-sized segregation patterns. Macromolecules, 2001, 34(25): 8814–8817

    Article  CAS  Google Scholar 

  36. Yabu H, Higuchi T, Ijiro K, Shimomura M. Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process. Chaos, 2005, 15(4): 047505–047507

    Article  CAS  Google Scholar 

  37. Hamley IW. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog Polym Sci, 2009, 34(11): 1161–1210

    Article  CAS  Google Scholar 

  38. Tsarkova L, Sevink GJA, Krausch G. Nanopattern evolution in block copolymer films: Experiment, simulations and challenges. Adv Polym Sci, 2010, 227: 33–73

    Article  CAS  Google Scholar 

  39. Albert JNL, Epps TH. Self-assembly of block copolymer thin films. Mater Today, 2010, 13(6): 24–33

    Article  CAS  Google Scholar 

  40. Fasolka MJ, Mayes AM. Block copolymer thin films: Physics and applications. Annual Review of Materials Research, 2001, 31(1): 323–355

    Article  CAS  Google Scholar 

  41. Green PF, Limary R. Block copolymer thin films: Pattern formation and phase behavior. Adv Colloid Interface Sci, 2001, 94(1–3): 53–81

    Article  CAS  Google Scholar 

  42. Riess G. Micellization of block copolymers Prog Polym Sci, 2003, 28(7): 1107–1170

    Article  CAS  Google Scholar 

  43. Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science, 1995, 268(5218): 1728–1731

    Article  CAS  Google Scholar 

  44. Zhang L, Eisenberg A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc, 1996, 118(13): 3168–3181

    Article  CAS  Google Scholar 

  45. Walther A, Muller AHE. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem Rev, 2013, http://dx.doi.org/10.1021/cr300089t

    Google Scholar 

  46. Guo A, Liu G, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules, 1996, 29(7): 2487–2493

    Article  CAS  Google Scholar 

  47. Tao J, Liu G, Ding J, Yang M. Cross-linked nanospheres of poly(2-cinnamoylethyl methacrylate) with immediately attached surface functional groups. Macromolecules, 1997, 30(14): 4084–4089

    Article  CAS  Google Scholar 

  48. Ding J, Liu G. Hairy, semi-shaved, and fully shaved hollow nano-spheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate). Chem Mater, 1998, 10(2): 537–542

    Article  CAS  Google Scholar 

  49. Hu J, Liu G, Nijkang G. Hierarchical interfacial assembly of abc triblock copolymer. J Am Chem Soc, 2008, 130(11): 3236–3237

    Article  CAS  Google Scholar 

  50. Lu Z, Liu G, Liu F. Water-dispersible porous polyisoprene-block-poly(acrylic acid) microspheres. J Appl Polym Sci, 2003, 90(10): 2785–2793

    Article  CAS  Google Scholar 

  51. Liu G, Yang H, Zhou J, Law S-J, Jiang Q, Yang G. Preparation of magnetic microspheres from water-in-oil emulsion stabilized by block copolymer dispersant. Biomacromolecules, 2005, 6(3): 1280–1288

    Article  CAS  Google Scholar 

  52. Underhill RS, Liu G. Triblock nanospheres and their use as templates for inorganic nanoparticle preparation. Chem Mater, 2000, 12(8): 2082–2091

    Article  CAS  Google Scholar 

  53. Li Z, Liu G, Law S-J, Sells T. Water-soluble fluorescent diblock nanospheres. Biomacromolecules, 2002, 3(5): 984–990

    Article  CAS  Google Scholar 

  54. Zheng R, Liu G, Yan X. Polymer nano- and microspheres with bumpy and chain-segregated surfaces. J Am Chem Soc, 2005, 127(44): 15358–15359

    Article  CAS  Google Scholar 

  55. Zhou Z, Liu G, Hong L. Water-dispersible superparamagnetic microspheres adorned with two types of surface chains. Biomacromolecules, 2011, 12(3): 813–823

    Article  CAS  Google Scholar 

  56. Ding J, Liu G. Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) vesicles and their aggregates. Macromolecules, 1997, 30(3): 655–657

    Article  CAS  Google Scholar 

  57. Zheng R, Liu G. Water-dispersible oil-filled abc triblock copolymer vesicles and nanocapsules. Macromolecules, 2007, 40(14): 5116–5121

    Article  CAS  Google Scholar 

  58. Tao J, Liu G. Polystyrene-block-poly(2-cinnamoylethyl methacrylate) tadpole molecules. Macromolecules, 1997, 30(8): 2408–2411

    Article  CAS  Google Scholar 

  59. Njikang G, Liu G, Curda SA. Tadpoles from the intramolecular photo-cross-linking of diblock copolymers. Macromolecules, 2008, 41(15): 5697–5702

    Article  CAS  Google Scholar 

  60. Njikang G, Liu G, Hong L. Chiral imprinting of diblock copolymer single-chain particles. Langmuir, 2011, 27(11): 7176–7184

    Article  CAS  Google Scholar 

  61. Hu J, Zheng R, Wang J, Hong L, Liu G. Macrocycles from the photochemical coupling of preassociated terminal blocks of block copolymers. Macromolecules, 2009, 42(13): 4638–4645

    Article  CAS  Google Scholar 

  62. Liu G, Qiao L, Guo A. Diblock copolymer nanofibers. Macromolecules, 1996, 29(16): 5508–5510

    Article  CAS  Google Scholar 

  63. Tao J, Stewart S, Liu G, Yang M. Star and cylindrical micelles of polystyrene-block-poly(2-cinnamoylethyl methacrylate) in cyclopentane. Macromolecules, 1997, 30(9): 2738–2745

    Article  CAS  Google Scholar 

  64. Stewart S, Liu G. Block copolymer nanotubes. Angew Chem Int Ed, 2000, 39(2): 340–344

    Article  CAS  Google Scholar 

  65. Yan X, Liu F, Li Z, Liu G. Poly(acrylic acid)-lined nanotubes of poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate). Macromolecules, 2001, 34(26): 9112–9116

    Article  CAS  Google Scholar 

  66. Liu G, Ding J, Guo A, Herfort M, Bazett-Jones D. Potential skin layers for membranes with tunable nanochannels. Macromolecules, 1997, 30(6): 1851–1853

    Article  CAS  Google Scholar 

  67. Liu G, Ding J. Diblock thin films with densely hexagonally packed nanochannels. Adv Mater, 1998, 10(1): 69–71

    Article  CAS  Google Scholar 

  68. Liu G, Ding J, Hashimoto T, Kimishima K, Winnik FM, Nigam S. Thin films with densely, regularly packed nanochannels: Preparation, characterization, and applications. Chem Mater, 1999, 11(8): 2233–2240

    Article  CAS  Google Scholar 

  69. Liu G, Ding J, Stewart S. Preparation and properties of nanoporous triblock copolymer membranes. Angew Chem Int Ed, 1999, 38(6): 835–838

    Article  CAS  Google Scholar 

  70. Dou H, Hong L, Liu G. Miktoarm star copolymers from the chemical stitching of associating block copolymers. Macromolecules, 2010, 43(10): 4629–4637

    Article  CAS  Google Scholar 

  71. Hu J, Njikang G, Liu G. Twisted abc triblock copolymer cylinders with segregated a and c coronal chains. Macromolecules, 2008, 41(21): 7993–7999

    Article  CAS  Google Scholar 

  72. Dupont J, Liu G, Niihara K-i, Kimoto R, Jinnai H. Self-assembled abc triblock copolymer double and triple helices. Angew Chem Int Ed, 2009, 48(33): 6144–6147

    Article  CAS  Google Scholar 

  73. Dou H, Liu G, Dupont J, Hong L. Triblock terpolymer helices self-assembled under special solvation conditions. Soft Matter, 2010, 6(17): 4214–4222

    Article  CAS  Google Scholar 

  74. Liu G, Hu N, Xu X, Yao H. Cross-linked polymer brushes. 1. Synthesis of poly[p-(vinyloxy)ethyl cinnamate]-b-poly (isobutylvinyl ether). Macromolecules, 1994, 27(14): 3892–3895

    Article  CAS  Google Scholar 

  75. Dupont J, Liu G. Abc triblock copolymer hamburger-like micelles, segmented cylinders, and janus particles. Soft Matter, 2010, 6(15): 3654–3661

    Article  CAS  Google Scholar 

  76. Stewart S, Liu G. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem Mater, 1999, 11(4): 1048–1054

    Article  CAS  Google Scholar 

  77. Henselwood F, Liu G. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid). Macromolecules, 1997, 30(3): 488–493

    Article  CAS  Google Scholar 

  78. Henselwood F, Wang G, Liu G. Removal of perylene from water using block copolymer nanospheres or micelles. J Appl Polym Sci, 1998, 70(2): 397–408

    Article  CAS  Google Scholar 

  79. Lu Z, Liu G, Phillips H, Hill JM, Chang J, Kydd RA. Palladium nanoparticle catalyst prepared in poly(acrylic acid)-lined channels of diblock copolymer microspheres. Nano Lett, 2001, 1(12): 683–687

    Article  CAS  Google Scholar 

  80. Xiong D, Liu G, Zhang J, Duncan S. Bifunctional core-shell-corona particles for amphiphobic coatings. Chem Mater, 2011, 23(11): 2810–2820

    Article  CAS  Google Scholar 

  81. Xiong D, Liu G, Hong L, Duncan EJS. Superamphiphobic diblock copolymer coatings. Chem Mater, 2011, 23(19): 4357–4366

    Article  CAS  Google Scholar 

  82. Zheng R, Wang J, Liu G, Jao T-C. Lubricant-oil-dispersible stainless-steel-binding block copolymer nanoaggregates and nanospheres. Macromolecules, 2007, 40(21): 7601–7608

    Article  CAS  Google Scholar 

  83. Zheng R, Liu G, Devlin M, Hux K, Jao T-c. Friction reduction of lubricant base oil by micelles and crosslinked micelles of block copolymers. Tribol Trans, 2010, 53(1): 97–107

    Article  CAS  Google Scholar 

  84. Liu G. Functional crosslinked nanostructures from block copolymers. Mater Sci Eng C, 1999, 10(1–2): 159–164

    Article  Google Scholar 

  85. Whitesides GM, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci, USA, 2002, 99(8): 4769–4774

    Article  CAS  Google Scholar 

  86. Matsen MW, Schick M. Self-assembly of block copolymers. Curr Opin Colloid Interface Sci, 1996, 1(3): 329–336

    Article  Google Scholar 

  87. Matsen MW. Self-assembly of block copolymers in thin films. Curr Opin Colloid Interface Sci, 1998, 3(1): 40–47

    Article  CAS  Google Scholar 

  88. Giacomelli C, Borsali R: Disordered phase and self-organization of block copolymer systems. In Soft matter characterization; Borsali R, Pecora R, Eds.; Springer Science + Business Media, LLC: New York, 2008; pp 133–189.

    Chapter  Google Scholar 

  89. Giacomelli C, Schmidt V, Aissou K, Borsali R. Block copolymer systems: From single chain to self-assembled nanostructures. Langmuir, 2010, 26(20): 15734–15744

    Article  CAS  Google Scholar 

  90. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4(7): 3591–3605

    Article  CAS  Google Scholar 

  91. Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci, 2010, 35(9): 1128–1143

    Article  CAS  Google Scholar 

  92. Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci, 2006, 31(11): 949–982

    Article  CAS  Google Scholar 

  93. Hirao A, Hayashi M, Loykulnant S, Sugiyama K, Ryu SW, Haraguchi N, Matsuo A, Higashihara T. Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives Prog Polym Sci, 2005, 30(2): 111–182

    Article  CAS  Google Scholar 

  94. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci, 2006, 31(12): 1068–1132

    Article  CAS  Google Scholar 

  95. Wyman I, Liu G. Architectural polymers, nanostructures, and hierarchical structures from block copolymers. In Complex macromolecular architectures; Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F, Eds.; John Wiley & Sons (Asia) Pte Ltd: Singapore, 2011; pp 739–761

    Chapter  Google Scholar 

  96. Liu G. Nanofibers. Adv Mater, 1997, 9(5): 437–439

    Article  CAS  Google Scholar 

  97. Zhou J, Li Z, Liu G. Diblock copolymer nanospheres with porous cores. Macromolecules, 2002, 35(9): 3690–3696

    Article  CAS  Google Scholar 

  98. Liu G. Block copolymer nanotubes derived from self-assembly. Adv Polym Sci, 2008, 220: 29–64

    CAS  Google Scholar 

  99. Wang G, Henselwood F, Liu G. Water-soluble poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid) nanospheres as traps for perylene. Langmuir, 1998, 14(7): 1554–1559

    Article  CAS  Google Scholar 

  100. Zhou Z, Liu G, Han D. Coating and structural locking of dipolar chains of cobalt nanoparticles. ACS Nano, 2009, 3(1): 165–172

    Article  CAS  Google Scholar 

  101. Liu G, Yan X, Li Z, Zhou J, Duncan S. End coupling of block copolymer nanotubes to nanospheres. J Am Chem Soc, 2003, 125(46): 14039–14045

    Article  CAS  Google Scholar 

  102. Yan X, Liu G, Li Z. Preparation and phase segregation of block copolymer nanotube multiblocks. J Am Chem Soc, 2004, 126(32): 10059–10066

    Article  CAS  Google Scholar 

  103. Cameron NS, Corbierre MK, Eisenberg A. 1998 e.W.R. Steacie award lecture asymmetric amphiphilic block copolymers in solution: A morphological wonderland. Can J Chem, 1999, 77(8): 1311–1326

    CAS  Google Scholar 

  104. Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev, 2012, 41(18): 5969–5985

    Article  CAS  Google Scholar 

  105. Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution. Adv Colloid Interface Sci, 1976, 6: 201–232

    Article  CAS  Google Scholar 

  106. Mortensen K. Structural properties of self-assembled polymeric micelles. Curr Opin Colloid Interface Sci, 1998, 3(1): 12–19

    Article  CAS  Google Scholar 

  107. Zhulina EB, Borisov OV. Theory of block polymer micelles: Recent advances and current challenges. Macromolecules, 2012, 45(11): 4429–4440

    Article  CAS  Google Scholar 

  108. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release, 2005, 109(1–3): 169–188

    Article  CAS  Google Scholar 

  109. Chen Y. Shaped hairy polymer nanoobjects. Macromolecules, 2012, 45(6): 2619–2631

    Article  CAS  Google Scholar 

  110. Njikang G, Han D, Wang J, Liu G. Abc triblock copolymer micelle-like aggregates in selective solvents for a and c. Macromolecules, 2008, 41(24): 9727–9735

    Article  CAS  Google Scholar 

  111. Luo L, Eisenberg A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains. Angew Chem Int Ed, 2002, 41(6): 1001–1004

    Article  CAS  Google Scholar 

  112. Gohy JF, Khousakoun E, Willet N, Varshney SK, Jerome R. Segregation of coronal chains in micelles formed by supramolecular interactions. Macromol Rapid Commun, 2004, 25(17): 1536–1539

    Article  CAS  Google Scholar 

  113. Zhang W, Shi L, An Y, Gao L, He B. Unimacromolucule exchange between bimodal micelles self-assembled by polystyrene-block-poly(acrylic acid) and polystyrene-block-poly(amino propyleneglycol methacrylate) in water. J Phys Chem B, 2003, 108(1): 200–204

    Article  CAS  Google Scholar 

  114. Xiong Da, He Z, An Y, Li Z, Wang H, Chen X, Shi L. Temperature-responsive multilayered micelles formed from the complexation of pnipam-b-p4vp block-copolymer and ps-b-paa core-shell micelles. Polymer, 2008, 49(10): 2548–2552

    Article  CAS  Google Scholar 

  115. Chang C, Wei H, Li Q, Yang B, Chen N, Zhou J-P, Zhang X-Z, Zhuo RX. Construction of mixed micelle with cross-linked core and dual responsive shells. Polym Chem, 2011, 2(4): 923–930

    Article  CAS  Google Scholar 

  116. Gohy JF, Varshney SK, Jerome R. Water-soluble complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) and poly(sodium methacrylate)-block-poly(ethylene oxide) copolymers. Macromolecules, 2001, 34(10): 3361–3366

    Article  CAS  Google Scholar 

  117. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 1995, 28(15): 5294–5299

    Article  CAS  Google Scholar 

  118. Harada A, Kataoka K. Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science, 1999, 283(5398): 65–67

    Article  CAS  Google Scholar 

  119. Petrov P, Tsvetanov CB, Jeronme R. Stabilized mixed micelles with a temperature-responsive core and a functional shell. J Phys Chem B, 2009, 113(21): 7527–7533

    Article  CAS  Google Scholar 

  120. Gao WP, Bai Y, Chen EQ, Li ZC, Han BY, Yang W-T, Zhou Q-F. Controlling vesicle formation via interpolymer hydrogen-bonding complexation between poly(ethylene oxide)-block-polybutadiene and poly(acrylic acid) in solution. Macromolecules, 2006, 39(14): 4894–4898

    Article  CAS  Google Scholar 

  121. Weaver JVM, Armes SP, Liu S. A “holy trinity” of micellar aggregates in aqueous solution at ambient temperature: Unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte. Macromolecules, 2003, 36(26): 9994–9998

    Article  CAS  Google Scholar 

  122. Gohy J-F, Varshney SK, Jerome R. Morphology of water-soluble interpolyelectrolyte complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) diblocks and poly(4-styrenesulfonate) polyanions. Macromolecules, 2001, 34(9): 2745–2747

    Article  CAS  Google Scholar 

  123. Pispas S. Complexes of polyelectrolyte-neutral double hydrophilic block copolymers with oppositely charged surfactant and polyelectrolyte. J Phys Chem B, 2007, 111(29): 8351–8359

    Article  CAS  Google Scholar 

  124. Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, Yang YY. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci, 2011, 16(3): 182–194

    Article  CAS  Google Scholar 

  125. Lefèvre N, Fustin CA, Gohy J-F. Polymeric micelles induced by interpolymer complexation. Macromol Rapid Commun, 2009, 30(22): 1871–1888

    Article  CAS  Google Scholar 

  126. Hu J, Liu G. Chain mixing and segregation in b-c and c-d diblock copolymer micelles. Macromolecules, 2005, 38(19): 8058–8065

    Article  CAS  Google Scholar 

  127. Yan X, Liu G, Hu J, Wilson CG. Coaggregation of b-c and d-c diblock copolymers with h-bonding c blocks in block-selective solvents. Macromolecules, 2006, 39(5): 1906–1912

    Article  CAS  Google Scholar 

  128. Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Multicompartment micelles from abc miktoarm stars in water. Science, 2004, 306(5693): 98–101

    Article  CAS  Google Scholar 

  129. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J Am Chem Soc, 1998, 120(38): 9941–9942

    Article  CAS  Google Scholar 

  130. Bronich TK, Kabanov AV, Kabanov VA, Yu K, Eisenberg A. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and n-alkylpyridinium cations. Macromolecules, 1997, 30(12): 3519–3525

    Article  CAS  Google Scholar 

  131. Bronich TK, Popov AM, Eisenberg A, Kabanov VA, Kabanov AV. Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes. Langmuir, 2000, 16(2): 481–489

    Article  CAS  Google Scholar 

  132. Pochan DJ, Chen Z, Cui H, Hales K, Qi K, Wooley KL. Toroidal triblock copolymer assemblies. Science, 2004, 306(5693): 94–97

    Article  CAS  Google Scholar 

  133. Cui H, Chen Z, Zhong S, Wooley KL, Pochan DJ. Block copolymer assembly via kinetic control. Science, 2007, 317(5838): 647–650

    Article  CAS  Google Scholar 

  134. Li Z, Chen Z, Cui H, Hales K, Qi K, Wooley KL, Pochan DJ. Disk morphology and disk-to-cylinder tunability of poly(acrylic acid)-b-poly(methyl acrylate)-b-polystyrene triblock copolymer solution-state assemblies. Langmuir, 2005, 21(16): 7533–7539

    Article  CAS  Google Scholar 

  135. Zhong S, Cui H, Chen Z, Wooley KL, Pochan DJ. Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4(1): 90–93

    Article  CAS  Google Scholar 

  136. Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir, 2009, 25(21): 12522–12528

    Article  CAS  Google Scholar 

  137. Yao X, Chen D, Jiang M. Micellization of ps-b-p4vp/formic acid in chloroform without or with the premixing of the copolymer with decanoic acid. Macromolecules, 2004, 37(11): 4211–4217

    Article  CAS  Google Scholar 

  138. Han P, Li S, Wang C, Xu H, Wang Z, Zhang X, Thomas J, Smet M. Uv-responsive polymeric superamphiphile based on a complex of malachite green derivative and a double hydrophilic block copolymer. Langmuir, 2011, 27(23): 14108–14111

    Article  CAS  Google Scholar 

  139. Chen S-C, Kuo S-W, Chang F-C. On modulating the self-assembly behaviors of poly(styrene-b-4-vinylpyridine)/octyl gallate blends in solution state via hydrogen bonding from different common solvents. Langmuir, 2011, 27(16): 10197–10205

    Article  CAS  Google Scholar 

  140. Yoshida E, Kunugi S. Micelle formation of nonamphiphilic diblock copolymers through noncovalent bond cross-linking. Macromolecules, 2002, 35(17): 6665–6669

    Article  CAS  Google Scholar 

  141. Chen D, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc Chem Res, 2005, 38(6): 494–502

    Article  CAS  Google Scholar 

  142. Krappe U, Stadler R, Voigt-Martin I. Chiral assembly in amorphous abc triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules, 1995, 28(13): 4558–4561

    Article  CAS  Google Scholar 

  143. Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science, 1998, 280(5368): 1427–1430

    Article  CAS  Google Scholar 

  144. Geng Y, Discher DE, Justynska J, Schlaad H. Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): A platform for self-assembling hybrid amphiphiles. Angew Chem Int Ed, 2006, 45(45): 7578–7581

    Article  CAS  Google Scholar 

  145. Xiang H, Shin K, Kim T, Moon SI, McCarthy TJ, Russel TP. From cylinders to helices upon confinement. Macromolecules, 2005, 38(4): 1055–1056

    Article  CAS  Google Scholar 

  146. Schacher FH, Rudolph T, Drechsler M, Müller AHE. Core-crosslinked compartmentalized cylinders. Nanoscale, 2011, 3(1): 288–297

    Article  CAS  Google Scholar 

  147. Stadler R, Auschra C, Beckmann J, Krappe U, Voight-Martin I, Leibler L. Morphology and thermodynamics of symmetric poly(a-block-b-block-c) triblock copolymers. Macromolecules, 1995, 28(9): 3080–3097

    Article  CAS  Google Scholar 

  148. Ho R-M, Chiang YW, Lin S-C, Chen C-K. Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci, 2011, 36(3): 376–453

    Article  CAS  Google Scholar 

  149. Chiang Y-W, Ho R-M, Burger C, Hasegawa H. Helical assemblies from chiral block copolymers. Soft Matter, 2011, 7(21): 9797–9803

    Article  CAS  Google Scholar 

  150. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: Synthesis, structures, and functions. Chem Rev, 2009, 109(11): 6102–6211

    Article  CAS  Google Scholar 

  151. Wu Y, Cheng G, Katsov K, Sides SW, Wang J, Tang J, Fredrickson GH, Moskovits M, Stucky GD. Composite mesostructures by nano-confinement. Nat Mater, 2004, 3(11): 816–822

    Article  CAS  Google Scholar 

  152. Jinnai H, Kaneko T, Matsunaga K, Abetz C, Abetz C. A double helical structure formed from an amorphous, achiral abc triblock terpolymer. Soft Matter, 2009, 5(10): 2042–2046

    Article  CAS  Google Scholar 

  153. Dobriyal P, Xiang H, Kazuyuki M, Chen J-T, Jinnai H, Russell TP. Cylindrically confined diblock copolymers. Macromolecules, 2009, 42(22): 9082–9088

    Article  CAS  Google Scholar 

  154. Hayward RC, Pochan DJ. Tailored assemblies of block copolymers in solution: It is all about the process. Macromolecules, 2010, 43(8): 3577–3584

    Article  CAS  Google Scholar 

  155. Pochan DJ, Zhu J, Zhang K, Wooley KL, Miesch C, Emrick T. Multicompartment and multigeometry nanoparticle assembly. Soft Matter, 2011, 7(6): 2500–2506

    Article  CAS  Google Scholar 

  156. Jain S, Bates FS. Consequences of nonergodicity in aqueous binary peo-pb micellar dispersions. Macromolecules, 2004, 37(4): 1511–1523

    Article  CAS  Google Scholar 

  157. Christian DA, Tian A, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE. Spotted vesicles, striped micelles and janus assemblies induced by ligand binding. Nat Mater, 2009, 8(10): 843–849

    Article  CAS  Google Scholar 

  158. Cui H, Chen Z, Wooley KL, Pochan DJ. Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5(6): 1269–1278

    Article  CAS  Google Scholar 

  159. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility Chem Soc Rev, 2006, 35(11): 1068–1083

    Article  CAS  Google Scholar 

  160. Prochazka K, Baloch MK, Tuzar Z. Photochemical stabilization of block copolymer micelles. Makromol Chem, 1979, 180(10): 2521–2523

    Article  CAS  Google Scholar 

  161. Wilson DJ, Riess G. Photochemical stabilization of block copolymer micelles. Eur Polym J, 1988, 24(7): 617–621

    Article  CAS  Google Scholar 

  162. Kato M, Ichijo T, Ishii K, Hasegawa M. Novel synthesis of photo-crosslinkable polymers. J Polym Sci A Polym Chem, 1971, 9(8): 2109–2128

    Article  CAS  Google Scholar 

  163. Ishizu K, Onen A. Core-shell type polymer microspheres prepared by domain fixing of block copolymer films. J Polym Sci A Polym Chem, 1989, 27(11): 3721–3731

    Article  CAS  Google Scholar 

  164. Saito R, Ishizu K, Fukutomi T. Crosslinking of the inner poly(methyl methacrylate) core of poly(α-methylstyrene-b-methyl methacrylate) micelles in selective solvent: 1. Effect of solvent selectivity Polymer, 1990, 31(4): 679–683

    Article  CAS  Google Scholar 

  165. Ishizu K, Kuwahara K. Organized polymerization of functional diblock copolymers possessing central isoprene groups. J Polym Sci A Polym Chem, 1993, 31(3): 661–665

    Article  CAS  Google Scholar 

  166. Liu G, Xu X, Skupinska K, Hu N, Yao H. Cross-linked polymer brushes. Ii. Formation and properties of poly(isobutylvinyl ether)-6-poly[2-(vinyloxy)ethyl cinnamate] brushes. J Appl Polym Sci, 1994, 53(12): 1699–1707

    Article  CAS  Google Scholar 

  167. Qiu X, Liu G. Water-dispersible fluorescent nanospheres from poly(solketal acrylate)-block-poly(2-hydroxyethyl acrylate). Polymer, 2004, 45(21): 7203–7211

    Article  CAS  Google Scholar 

  168. Thurmond II KB, Kowalewski T, Wooley KL. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J Am Chem Soc, 1996, 118(30): 7239–7240

    Article  CAS  Google Scholar 

  169. Wooley KL. From dendrimers to knedel-like structures. Chem Eur J, 1997, 3(9): 1397–1399

    Article  CAS  Google Scholar 

  170. Zhang L, Liu W, Lin L, Chen D, Stenzel MH. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the raft process. Biomacromolecules, 2008, 9(11): 3321–3331

    Article  CAS  Google Scholar 

  171. Joralemon M, O’Reilly RK, Hawker CJ, Wooley KL. Shell click-crosslinked (scc) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J Am Chem Soc, 2005, 127(48): 16892–16899

    Article  CAS  Google Scholar 

  172. Feng G, Jia Y, Liu L, Chang W, Li J. Novel organotin-containing shell-cross-linked knedel and core-cross-linked knedel: Synthesis and application in catalysis. J Polym Sci A Polym Chem, 2010, 48(24): 5992–6002

    Article  CAS  Google Scholar 

  173. Erhardt R, Boker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AHE. Janus micelles. Macromolecules, 2001, 34(4): 1069–1075

    Article  CAS  Google Scholar 

  174. Gröschel AH, Walther A, Lobling TI, Schmelz J, Hanisch A, Schmalz H, Müller AHE. Facile, solution-based synthesis of soft, nanoscale janus particles with tunable janus balance. J Am Chem Soc, 2012, 134(33): 13850–13860

    Article  CAS  Google Scholar 

  175. Read ES, Armes SP. Recent advances in shell cross-linked micelles Chem Commun, 2007, (29): 3021–3035

    Google Scholar 

  176. van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter, 2011, 7(7): 3246–3259

    Article  CAS  Google Scholar 

  177. Jeon SJ, Yi GR, Yang SM. Cooperative assembly of block copolymers with deformable interfaces: Toward nanostructured particles. Adv Mater, 2008, 20(21): 4103–4108

    Article  CAS  Google Scholar 

  178. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537–541

    Article  CAS  Google Scholar 

  179. Jeon SJ, Yi GR, Koo CM, Yang SM. Nanostructures inside colloidal particles of block copolymer/homopolymer blends. Macromolecules, 2007, 40(23): 8430–8439

    Article  CAS  Google Scholar 

  180. Tanaka T, Saito N, Okubo M. Control of layer thickness of onionlike multilayered composite polymer particles prepared by the solvent evaporation method. Macromolecules, 2009, 42(19): 7423–7429

    Article  CAS  Google Scholar 

  181. Schacher FH, Rupar PA, Manners I. Functional block copolymers: Nanostructured materials with emerging applications. Angew Chem Int Ed, 2012, 51(32): 7898–7921

    Article  CAS  Google Scholar 

  182. Liu G: Block copolymer nanofibers and nanotubes. In Block copolymers in nanoscience; Lazzari M, Liu G, Lecommandoux S, Eds.; Wiley-VCH Verlag GmbH & Co. KGaG: Weinheim, 2006; pp 233–255

    Chapter  Google Scholar 

  183. Liu G, Yan X, Qiu X, Li Z. Fractionation and solution properties of ps-b-pcema-b-ptba nanofibers. Macromolecules, 2002, 35(20): 7742–7747

    Article  CAS  Google Scholar 

  184. Liu G, Yan X, Duncan S. Polystyrene-block-polyisoprene nanofiber fractions. 1. Preparation and static light-scattering study. Macromolecules, 2002, 35(26): 9788–9793

    Article  CAS  Google Scholar 

  185. Liu G, Yan X, Duncan S. Polystyrene-block-polyisoprene nanofiber fractions. 2. Viscometric study. Macromolecules, 2003, 36(6): 2049–2054

    Article  CAS  Google Scholar 

  186. Yan X, Liu G, Li H. Preparation, characterization, and solution viscosity of polystyrene-block-polyisoprene nanofiber fractions. Langmuir, 2004, 20(11): 4677–4683

    Article  CAS  Google Scholar 

  187. Moore WR. Viscosities of dilute polymer solutions. Prog Polym Sci, 1967, 1: 1–43

    Article  CAS  Google Scholar 

  188. Yamakawa H, Fujii M. Intrinsic viscosity of wormlike chains. Determination of the shift factor. Macromolecules, 1974, 7(1): 128–135

    Article  CAS  Google Scholar 

  189. Yamakawa H, Yoshizaki T. Transport coefficients of helical wormlike chains. 3. Intrinsic viscosity. Macromolecules, 1980, 13(3): 633–643

    Article  CAS  Google Scholar 

  190. Bohdanecky M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers. Macromolecules, 1983, 16(9): 1483–1492

    Article  CAS  Google Scholar 

  191. Onsager L. The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci, 1949, 51 (May): 627–659

    Google Scholar 

  192. Flory PJ. Phase equilibria in solutions of rod-like particles. Proc R Soc London, A: Math Phys Sci, 1956, 234(1196): 73–89

    Article  CAS  Google Scholar 

  193. Li X, Liu G. Layer-by-layer deposition of block copolymer nanofibers and porous nanofiber multilayer films. Langmuir, 2009, 25(18): 10811–10819

    Article  CAS  Google Scholar 

  194. Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol Symp, 1991, 46(1): 321–327

    Article  CAS  Google Scholar 

  195. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237

    Article  CAS  Google Scholar 

  196. Ding J, Liu G. Water-soluble hollow nanospheres as potential drug carriers. J Phys Chem B, 1998, 102(31): 6107–6113

    Article  CAS  Google Scholar 

  197. Cooney DT, Hillmyer MA, Cussler EL, Moggridge GD. Diffusion in nanoporous materials made from block copolymers. Crystallogr Rev, 2006, 12(1): 13–24

    Article  CAS  Google Scholar 

  198. Phillip WA, Rzayev J, Hillmyer MA, Cussler EL. Gas and water liquid transport through nanoporous block copolymer membranes. J Membr Sci, 2006, 286(1–2): 144–152

    Article  CAS  Google Scholar 

  199. Phillip WA, O’Neill B, Rodwogin M, Hillmyer MA, Cussler EL. Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces, 2010, 2(3): 847–853

    Article  CAS  Google Scholar 

  200. Yan X, Liu G, Liu F, Tang BZ, Peng H, Pakhomov AB, Wong CY. Superparamagnetic triblock copolymer/fe2o3 hybrid nanofibers. Angew Chem Int Ed, 2001, 40(19): 3593–3596

    Article  CAS  Google Scholar 

  201. Li Z, Liu G. Water-dispersible tetrablock copolymer synthesis, aggregation, nanotube preparation, and impregnation. Langmuir, 2003, 19(25): 10480–10486

    Article  CAS  Google Scholar 

  202. Yan X, Liu G, Haeussler M, Tang BZ. Water-dispersible polymer/pd/ni hybrid magnetic nanofibers. Chem Mater, 2005, 17(24): 6053–6059

    Article  CAS  Google Scholar 

  203. Underhill RS, Liu G. Preparation and performance of pd particles encapsulated in block copolymer nanospheres as a hydrogenation catalyst. Chem Mater, 2000, 12(12): 3633–3641

    Article  CAS  Google Scholar 

  204. Lee JS, Hirao A, Nakahama S. Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules, 1988, 21(1): 274–276

    Article  CAS  Google Scholar 

  205. Lee JS, Hirao A, Nakahama S. Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures. Macromolecules, 1989, 22(6): 2602–2606

    Article  CAS  Google Scholar 

  206. Zhang Q, Remsen EE, Wooley KL. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J Am Chem Soc, 2000, 122(15): 3642–3651

    Article  CAS  Google Scholar 

  207. Seo M, Amendt MA, Hillmyer MA. Cross-linked nanoporous materials from reactive and multifunctional block polymers. Macromolecules, 2011, 44(23): 9310–9318

    Article  CAS  Google Scholar 

  208. Huang H, Remsen EE, Kowalewski T, Wooley KL. Nanocages derived from shell cross-linked micelle templates. J Am Chem Soc, 1999, 121(15): 3805–3806

    Article  CAS  Google Scholar 

  209. Turner JL, Wooley KL. Nanoscale cage-like structures derived from polyisoprene-containing shell cross-linked nanoparticle templates. Nano Lett, 2004, 4(4): 683–688

    Article  CAS  Google Scholar 

  210. Sanji T, Nakatsuka Y, Ohnishi S, Sakurai H. Preparation of nanometer-sized hollow particles by photochemical degradation of polysilane shell cross-linked micelles and reversible encapsulation of guest molecules. Macromolecules, 2000, 33(23): 8524–8526

    Article  CAS  Google Scholar 

  211. Hillmyer MA. Nanoporous materials from block copolymer precursors. Adv Polym Sci, 2005, 190: 137–181

    Article  CAS  Google Scholar 

  212. Olson DA, Chen L, Hillmyer MA. Templating nanoporous polymers with ordered block copolymers. Chem Mater, 2008, 20(3): 869–890

    Article  CAS  Google Scholar 

  213. Jackson EA, Hillmyer MA. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano, 2010, 4(7): 3548–3553

    Article  CAS  Google Scholar 

  214. Lee ES, Na K, Bae YH. Polymeric micelle for tumor ph and folate-mediated targeting. J Control Release, 2003, 91(1–2): 103–113

    Article  CAS  Google Scholar 

  215. Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci, USA, 2009, 106(46): 19268–19273

    Article  CAS  Google Scholar 

  216. Sourkohi BK, Cunningham A, Zhang Q, Oh JK. Biodegradable block copolymer micelles with thiol-responsive sheddable coronas. Biomacromolecules, 2011, 12(10): 3819–3825

    Article  CAS  Google Scholar 

  217. Njikang G, Liu G, Gao J. Preparation and quencher diffusion study of pyrene-tagged water-dispersible abc triblock nanospheres. Macromolecules, 2007, 40(25): 9174–9180

    Article  CAS  Google Scholar 

  218. Hoppenbrouwers E, Li Z, Liu G. Triblock nanospheres with amphiphilic coronal chains. Macromolecules, 2003, 36(3): 876–881

    Article  CAS  Google Scholar 

  219. Koh K, Liu GJ, Wilson CG. Grafting and patterned grafting of block copolymer nanotubes onto inorganic substrates. J Am Chem Soc, 2006, 128(49): 15921–15927

    Article  CAS  Google Scholar 

  220. Discher DE, Eisenberg A. Polymer vesicles. Science, 2002, 297(5583): 967–973

    Article  CAS  Google Scholar 

  221. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA. Generation of polymerosomes from double-emulsions. Langmuir, 2005, 21(20): 9183–9186

    Article  CAS  Google Scholar 

  222. Boyer C, Whittaker MR, Nouvel C, Davis TP. Synthesis of hollow polymer nanocapsules exploiting gold nanoparticles as sacrificial templates. Macromolecules, 2010, 43(4): 1792–1799

    Article  CAS  Google Scholar 

  223. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB. Dye-sensitized solar cells based on oriented tio2 nanotube arrays: Transport, trapping, and transfer of electrons. J Am Chem Soc, 2008, 130(40): 13364–13372

    Article  CAS  Google Scholar 

  224. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered tio2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2005, 6(2): 215–218

    Article  CAS  Google Scholar 

  225. Normile D. Nanotubes generate full-color displays. Science, 1999, 286(5447): 2056–2057

    Article  CAS  Google Scholar 

  226. Zheng Q, Kang H, Yun J, Lee J, Park JH, Baik S. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano, 2011, 5(6): 5088–5093

    Article  CAS  Google Scholar 

  227. Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented tio2 nanotubes arrays. Nano Lett, 2006, 7(1): 69–74

    Article  CAS  Google Scholar 

  228. Hasobe T, Fukuzumi S, Kamat PV. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem Int Ed, 2006, 45(5): 755–759

    Article  CAS  Google Scholar 

  229. Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res, 2002, 35(12): 1026–1034

    Article  CAS  Google Scholar 

  230. Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292(5517): 706–709

    Article  CAS  Google Scholar 

  231. Halford B. Nanotube catalysts. Chemical & Engineering News, 2009, 87(6): 7

    Article  Google Scholar 

  232. Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res, 2011, 44(8): 553–562

    Article  CAS  Google Scholar 

  233. Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov, 2003, 2(1): 29–37

    Article  CAS  Google Scholar 

  234. Organo VG, Rudkevich DM. Emerging host-guest chemistry of synthetic nanotubes. Chem Commun, 2007, (38): 3891–3899

    Google Scholar 

  235. Yin YF, Mays T, McEnaney B. Adsorption of nitrogen in carbon nanotube arrays. Langmuir, 1999, 15(25): 8714–8718

    Article  CAS  Google Scholar 

  236. Pascal TA, Goddard WA, Jung Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc Natl Acad Sci, USA, 2011, 108(29): 11794–11798

    Article  CAS  Google Scholar 

  237. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  Google Scholar 

  238. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev, 2006, 106(3): 1105–1136

    Article  CAS  Google Scholar 

  239. Hu L, Hecht DS, Gruner G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790–5844

    Article  CAS  Google Scholar 

  240. Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G. Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res, 2002, 35(12): 1045–1053

    Article  CAS  Google Scholar 

  241. Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383): 220–222

    Article  CAS  Google Scholar 

  242. Liu Z, Misra M. Dye-sensitized photovoltaic wires using highly ordered tio2 nanotube arrays. ACS Nano, 2010, 4(4): 2196–2200

    Article  CAS  Google Scholar 

  243. Qiao Y, Wang Y, Yang Z, Lin Y, Huang J. Self-templating of metal-driven supramolecular self-assembly: A general approach toward 1d inorganic nanotubes. Chem Mater, 2011, 23(5): 1182–1187

    Article  CAS  Google Scholar 

  244. Zhou M, Zhu H, Wang X, Xu Y, Tao Y, Hark S, Xiao X, Li Q. Cdse nanotube arrays on ito via aligned zno nanorods templating. Chem Mater, 2009, 22(1): 64–69

    Article  CAS  Google Scholar 

  245. Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett, 2005, 5(7): 1343–1346

    Article  CAS  Google Scholar 

  246. Brea RJ, Reiriz C, Granja JR. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Chem Soc Rev, 2010, 39(5): 1448–1456

    Article  CAS  Google Scholar 

  247. Amdursky N, Molotskii M, Gazit E, Rosenman G. Elementary building blocks of self-assembled peptide nanotubes. J Am Chem Soc, 2010, 132(44): 15632–15636

    Article  CAS  Google Scholar 

  248. Amdursky N, Beker P, Koren I, Bank-Srour B, Mishina E, Semin S, Rasing T, Rosenberg Y, Barkay Z, Gazit E, Rosenman G. Structural transition in peptide nanotubes. Biomacromolecules, 2011, 12(4): 1349–1354

    Article  CAS  Google Scholar 

  249. Hourani R, Zhang C, van der Weegen R, Ruiz L, Li C, Keten S, Helms BA, Xu T. Processable cyclic peptide nanotubes with tunable interiors. J Am Chem Soc, 2011, 133(39): 15296–15299

    Article  CAS  Google Scholar 

  250. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619): 625–627

    Article  CAS  Google Scholar 

  251. Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Peña D, Miller JE, van Swol F, Shelnutt JA. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem Commun, 2004, (9): 1044–1045

    Google Scholar 

  252. Tarabout C, Roux S, Gobeaux F, Fay N, Pouget E, Meriadec C, Ligeti M, Thomas D, IJsselstijn M, Besselievre F, Buisson D-A, Verbavatz J-M, Petitjean M, Valéry C, Perrin L, Rousseau B, Artzner F, Paternostre M, Cintrat J-C. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc Natl Acad Sci, USA, 2011, 108(19): 7679–7684

    Article  CAS  Google Scholar 

  253. Smirnov AI, Poluektov OG. Substrate-supported lipid nanotube arrays. J Am Chem Soc, 2003, 125(28): 8434–8435

    Article  CAS  Google Scholar 

  254. Karp ES, Inbaraj JJ, Laryukhin M, Lorigan GA. Electron paramagnetic resonance studies of an integral membrane peptide inserted into aligned phospholipid bilayer nanotube arrays. J Am Chem Soc, 2006, 128(37): 12070–12071

    Article  CAS  Google Scholar 

  255. Xiao R, Cho SI, Liu R, Lee SB. Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc, 2007, 129(14): 4483–4489

    Article  CAS  Google Scholar 

  256. Yu K, Zhang L, Eisenberg A. Novel morphologies of “crew-cut” aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir, 1996, 12(25): 5980–5984

    Article  CAS  Google Scholar 

  257. Yu K, Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic ps-b-peo diblock copolymers in solution. Macromolecules, 1998, 31(11): 3509–3518

    Article  CAS  Google Scholar 

  258. Tian Z, Le H, Wang M, Zhang A, Feng Z-G. Vesicular and tubular structures prepared from self-assembly of novel amphiphilic aba triblock copolymers in aqueous solutions. J Polym Sci A Polym Chem, 2008, 46(3): 1042–1050

    Article  CAS  Google Scholar 

  259. Raez J, Manners I, Winnik MA. Nanotubes from the self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers. J Am Chem Soc, 2002, 124(35): 10381–10395

    Article  CAS  Google Scholar 

  260. Frankowski DJ, Raez J, Manners I, Winnik MA, Khan SA, Spontak RJ. Formation of dispersed nanostructures from poly(ferrocenyl-dimethylsilane-b-dimethylsiloxane) nanotubes upon exposure to supercritical carbon dioxide. Langmuir, 2004, 20(21): 9304–9314

    Article  CAS  Google Scholar 

  261. Grumelard J, Taubert A, Meier W. Soft nanotubes from amphiphilic aba triblock macromonomers. Chem Commun, 2004, (13): 1462–1463

    Google Scholar 

  262. Wan WM, Pan CY. One-pot synthesis of polymeric nanomaterials via raft dispersion polymerization induced self-assembly and re-organization. Polym Chem, 2010, 1(9): 1475–1484

    Article  CAS  Google Scholar 

  263. Jia L, Lévy D, Durand D, Impéror-Clerc M, Cao A, Li M-H. Smectic polymer micellar aggregates with temperature-controlled morphologies. Soft Matter, 2011, 7(16): 7395–7403

    Article  CAS  Google Scholar 

  264. Kim Y, Dalhaimer P, Christian DA, Discher DE. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology, 2005, 16(7): S484–S491

    Article  CAS  Google Scholar 

  265. Geng Y, Discher DE. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc, 2005, 127(37): 12780–12781

    Article  CAS  Google Scholar 

  266. Geng Y, Discher DE. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer, 2006, 47(7): 2519–2525

    Article  CAS  Google Scholar 

  267. Kang M, Moon B. Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films. Macromolecules, 2009, 42(1): 455–458

    Article  CAS  Google Scholar 

  268. Schumers J-M, Gohy J-F, Fustin C-A. A versatile strategy for the synthesis of block copolymers bearing a photocleavable junction. Polym Chem, 2010, 1(2): 161–163

    Article  CAS  Google Scholar 

  269. Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. Peg-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc, 2008, 130(18): 6001–6009

    Article  CAS  Google Scholar 

  270. Cerritelli S, Velluto D, Hubbell JA. Peg-ss-pps: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 2007, 8(6): 1966–1972

    Article  CAS  Google Scholar 

  271. Goldbach JT, Russell TP, Penelle J. Synthesis and thin film characterization of poly(styrene-block-methyl methacrylate) containing an anthracene dimer photocleavable junction point. Macromolecules, 2002, 35(11): 4271–4276

    Article  CAS  Google Scholar 

  272. Goldbach JT, Lavery KA, Penelle J, Russell TP. Nano- to macro-sized heterogeneities using cleavable diblock copolymers. Macromolecules, 2004, 37(25): 9639–9645

    Article  CAS  Google Scholar 

  273. Tang L-Y, Wang Y-C, Li Y, Du J-Z, Wang J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjugate Chem, 2009, 20(6): 1095–1099

    Article  CAS  Google Scholar 

  274. Wang K, Liu Y, Yi W-J, Li C, Li Y-Y, Zhuo R-X, Zhang X-Z. Novel shell-cross-linked micelles with detachable peg corona for glutathione-mediated intracellular drug delivery. Soft Matter, 2013, 9(3): 692–699

    Article  CAS  Google Scholar 

  275. Yurt S, Anyanwu UK, Scheintaub JR, Coughlin EB, Venkataraman D. Scission of diblock copolymers into their constituent blocks. Macromolecules, 2006, 39(5): 1670–1672

    Article  CAS  Google Scholar 

  276. Zhang M, Yang L, Yurt S, Misner MJ, Chen J-T, Coughlin EB, Venkataraman D, Russell TP. Highly ordered nanoporous thin films from cleavable polystyrene-block-poly(ethylene oxide). Adv Mater, 2007, 19(12): 1571–1576

    Article  CAS  Google Scholar 

  277. Lin S, Du F, Wang Y, Ji S, Liang D, Yu L, Li Z. An acid-labile block copolymer of pdmaema and peg as potential carrier for intelligent gene delivery systems. Biomacromolecules, 2008, 9(1): 109–115

    Article  CAS  Google Scholar 

  278. Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ. Defect-free nanoporous thin films from abc triblock copolymers. J Am Chem Soc, 2006, 128(23): 7622–7629

    Article  CAS  Google Scholar 

  279. Han D, Tong X, Zhao Y. Fast photodegradable block copolymer micelles for burst release. Macromolecules, 2011, 44(3): 437–439

    Article  CAS  Google Scholar 

  280. Han D, Tong X, Zhao Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir, 2012, 28(5): 2327–2331

    Article  CAS  Google Scholar 

  281. Theato P. One is enough: Influencing polymer properties with a single chromophoric unit. Angew Chem Int Ed, 2011, 50(26): 5804–5806

    Article  CAS  Google Scholar 

  282. Cabane E, Malinova V, Meier W. Synthesis of photocleavable amphiphilic block copolymers: Toward the design of photosensitive nanocarriers. Macromol Chem Phys, 2010, 211(17): 1847–1856

    Article  CAS  Google Scholar 

  283. Zhao H, Gu W, Sterner E, Russell TP, Coughlin EB, Theato P. Highly ordered nanoporous thin films from photocleavable block copolymers. Macromolecules, 2011, 44(16): 6433–6440

    Article  CAS  Google Scholar 

  284. Schumers J-M, Fustin C-A, Gohy J-F. Light-responsive block copolymers. Macromol Rapid Commun, 2010, 31(18): 1588–1607

    Article  CAS  Google Scholar 

  285. Zhao Y. Photocontrollable block copolymer micelles: What can we control? J Mater Chem, 2009, 19(28): 4887–4895

    Article  CAS  Google Scholar 

  286. Zhao Y. Light-responsive block copolymer micelles. Macromolecules, 2012, 45(9): 3647–3657

    Article  CAS  Google Scholar 

  287. Zhao H, Sterner ES, Coughlin EB, Theato P. O-nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules, 2012, 45(4): 1723–1736

    Article  CAS  Google Scholar 

  288. Holmes CP. Model studies for new o-nitrobenzyl photolabile linkers: Substituent effects on the rates of photochemical cleavage. J Org Chem, 1997, 62(8): 2370–2380

    Article  CAS  Google Scholar 

  289. Xue Z, Liu M, Jiang L. Recent developments in polymeric superoleophobic surfaces. J Polym Sci B Polym Phys, 2012, 50(17): 1209–1224

    Article  CAS  Google Scholar 

  290. Rabnawaz M, Liu G. Preparation and application of a dual light-responsive triblock terpolymer. Macromolecules, 2012, 45(13): 5586–5595

    Article  CAS  Google Scholar 

  291. Tezuka Y, Oike H. Topological polymer chemistry. Prog Polym Sci, 2002, 27(6): 1069–1122

    Article  CAS  Google Scholar 

  292. Tezuka Y. Topological polymer chemistry by electrostatic self-assembly. J Polym Sci A Polym Chem, 2003, 41(19): 2905–2917

    Article  CAS  Google Scholar 

  293. Tezuka Y. Topological polymer chemistry by dynamic selection from electrostatic polymer self-assembly. Chem Rec, 2005, 5(1): 17–26

    Article  CAS  Google Scholar 

  294. Hirao A, Murano K, Oie T, Uematsu M, Goseki R, and Yuri Matsuo Y. Chain-end-and in-chain-functionalized ab diblock copolymers as key building blocks in the synthesis of well-defined architectural polymers. Polym Chem, 2011, 2(6): 1219–1233

    Article  CAS  Google Scholar 

  295. Pyun J, Tang C, Kowalewski T, Frechet JMJ, Hawker CJ. Synthesis and direct visualization of block copolymers composed of different macromolecular architectures. Macromolecules, 2005, 38(7): 2674–2685

    Article  CAS  Google Scholar 

  296. Dong Y-Q, Tong Y-Y, Dong B-T, Du F-S, Li Z-C. Preparation of tadpole-shaped amphiphilic cyclic ps-b-linear peo via atrp and click chemistry. Macromolecules, 2009, 42(8): 2940–2948

    Article  CAS  Google Scholar 

  297. Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed Engl, 1972, 11(4): 341

    CAS  Google Scholar 

  298. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed, 1995, 34(17): 1812–1832

    Article  CAS  Google Scholar 

  299. Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography. J Chromatogr A, 2001, 906(1–2): 227–252

    CAS  Google Scholar 

  300. Lepistoe M, Sellergren B. Discrimination between amino acid amide conformers by imprinted polymers. J Org Chem, 1989, 54(26): 6010–6012

    Article  CAS  Google Scholar 

  301. Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M. The first example of molecularly imprinted nanogels with aldolase type i activity. Chem Eur J, 2008, 14(23): 7059–7065

    CAS  Google Scholar 

  302. Karlsson BCG, Rosengren AM, Naslund I, Andersson PO, Nicholls IA. Synthetic human serum albumin sudlow i binding site mimics. J Med Chem, 2010, 53(22): 7932–7937

    Article  CAS  Google Scholar 

  303. Bui BTS, Merlier F, Haupt K. Toward the use of a molecularly imprinted polymer in doping analysis: Selective preconcentration and analysis of testosterone and epitestosterone in human urine. Anal Chem, 2010, 82(11): 4420–4427

    Article  CAS  Google Scholar 

  304. Stringer RC, Gangopadhyay S, Grant SA. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem, 2010, 82(10): 4015–4019

    Article  CAS  Google Scholar 

  305. Apodaca DC, Pernites RB, Del Mundo FR, Advincula RC. Detection of 2,4-dinitrotoluene (dnt) as a model system for nitroaromatic compounds via molecularly imprinted short-alkyl-chain sams. Langmuir, 2011, 27(11): 6768–6779

    Article  CAS  Google Scholar 

  306. ten Brinke G, Loos K, Vukovic I, du Sart GG. Hierarchical self-assembly of two-length-scale multiblock copolymers. J Phys: Condens Matter, 2011, 23(28): 284110/284111–284116

    Article  CAS  Google Scholar 

  307. Li X, Liu G, Han D. Wrapping amino-bearing block copolymer cylinders around carboxyl-bearing nanofibers: A case of hierarchical assembly. Soft Matter, 2011, 7(18): 8216–8223

    Article  CAS  Google Scholar 

  308. Nie L, Liu S, Shen W, Chen D, Jiang M. One-pot synthesis of amphiphilic polymeric janus particles and their self-assembly into supermicelles with a narrow size distribution. Angew Chem Int Ed, 2007, 46(33): 6321–6324

    Article  CAS  Google Scholar 

  309. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science, 2007, 317(5838): 644–657

    Article  CAS  Google Scholar 

  310. He W-N, Xu J-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Polym Sci, 2012, 37(10): 1350–1400

    Article  CAS  Google Scholar 

  311. Massey JA, Temple K, Cao L, Rharbi Y, Raez J, Winnik MA, Manners I. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethyl-siloxane) in n-alkane solvents. J Am Chem Soc, 2000, 122(47): 11577–11584

    Article  CAS  Google Scholar 

  312. Massey JK, Power KN, Manners I, Winnik MA. Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: Nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles. J Am Chem Soc, 1998, 120(37): 9533–9540

    Article  CAS  Google Scholar 

  313. Patra SK, Ahmed R, Whittell GR, Lunn DJ, Dunphy EL, Winnik MA, Manners I. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J Am Chem Soc, 2011, 133(23): 8842–8845

    Article  CAS  Google Scholar 

  314. Gao Y, Li X, Hong L, Liu G. Mesogen-driven formation of triblock copolymer cylindrical micelles. Macromolecules, 2012, 45(3): 1321–1330

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoJun Liu.

Additional information

Contributed by LIU Guojun (Queen’s University)

LIU Guojun (left) received his B.Sc. degree from Nankai University, China, and his M.Sc. and Ph.D. degrees from the University of Toronto. After his post-doctoral research at the University of Toronto and McGill University, he joined the University of Calgary as an Assistant Professor in 1990. There, he rose to the ranks of Associate and Full Professor in 1995 and 1999, respectively. In 2004, he joined Queen’s University as a Tier I Canada Research Chair in Materials Science. His current research interests are in the preparation, study, and application of architectured materials of block copolymers.

WYMAN Ian (right) received a B.Sc. at Dalhousie University, a M.Sc. in Inorganic Chemistry at St. Francis Xavier University in 2004 under the supervision of Prof. Manuel Aquino. Subsequently, he obtained a Ph.D. in Supramolecular Chemistry from Queen’s University under the supervision of Prof. Donal Macartney in 2010. He is currently a postdoctoral researcher in Prof. Guojun Liu’s lab. His research interests include supramolecular chemistry, transition metal chemistry, physical organic chemistry, and block copolymer self-assembly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyman, I., Liu, G. Self-assembly and chemical processing of block copolymers: A roadmap towards a diverse array of block copolymer nanostructures. Sci. China Chem. 56, 1040–1066 (2013). https://doi.org/10.1007/s11426-013-4951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4951-4

Keywords

Navigation